

OLAF PFEIFFER 1

Cybersecurity Primitives for

Small-Packet Networks
This work is based on a research grant, collaborative

project of the Institute of Reliable Embedded Systems

and Communication Electronics (ivESK, Prof. Sikora of

Offenburg University) and the Embedded Systems

Academy. It has been awarded focusing on embedded

network security. The project is dedicated to

developing a security framework for small-packet

networks, with a specific emphasis on CAN and

CANopen systems. This project is supported by the

Federal Ministry for Economic Affairs and Climate

Action (BMWK) on the basis of a decision by the

German Bundestag.

SMALL-PACKET NETWORK ATTACK VECTORS

Regulatory Demands
Around the world, tougher regulations and acts are

being discussed and enacted, which in the strictest

case stipulate that electronics-based systems must

follow “security by design”. Some specifically define

that(relevant) data in rest and in transit needs to be

protected by state-of-the-art authentication and

encryption. Consequently, if data exchanged via small-

packet networks like LIN, I2C, Modbus, CAN, CANopen

or other fieldbuses must meet the requirements of

such regulations, it needs to be protected in several

applications.

Cryptographic Primitives
One of the challenges in securing small-packet

network communication is the lack of bandwidth and

the prevalent limited CPU resources. Nevertheless,

some basic cybersecurity requirements must be met.

In summary, the following key points are addressed:

• Minimal hardware requirements

• Cryptographic functions

• Point-to-point security

• Time-based rolling key derivation

• Group security

Minimal Hardware Requirements
The usage of cryptographic methods requires more

resources from the used microcontroller-based

systems. Besides the processing power needed for the

selected cryptographic algorithms, further

requirements are a true random number generator

and secure storage for the used pre-shared

cryptographic key(s). If a security hardened

microcontroller is not available, it must be carefully

determined if and how the requirements for true

randomness, secure key storage and processing power

can be adequately met.

Cryptographic Methods and Functions: KDF, AEAD

KDF INPUTS AND OUTPUTS

For key derivation standardized KDF (key derivation

functions) are used. Authentication and encryption

are AEAD based (authenticated encryption with

OLAF PFEIFFER 2

AEAD INPUTS AND OUTPUTS

associated data), providing a standardized method to

produce authentication tags and optionally encrypt

data. Selection of algorithms and tag sizes are to be

specified in accordance with the resources available to

the participants in the communication and the

additional bandwidth made available for the security

overhead (adding authentication tags to

communication objects).

Point-to-Point Security with microTLS
With microTLS, a variation of TLS-PSK (Transport Layer

Security with pre-shared keys), point-to-point security

can be established. This method allows establishing a

secure communication channel within a total of 4

messages (each as small as 8 bytes for classical CAN or

8-10 bytes for CAN FD) exchanged.

MICROTLS DERIVED FROM TLS-PSK

Based on the secure channel, both Client and Server

agree on a shared session key and an initial counter

value usable as uniqueness/nonce input to the AEAD

function. Each communication exchange includes the

least significant portion of the counter (to ensure both

Client and Server are still in sync and to prohibit replay

attacks) and an authentication tag.

Time-based Rolling Key Derivation
To minimize key exposure, the current communication

keys are automatically derived from the main pre-

shared key on a fixed time basis. This requires a

synchronized time basis among all the participants in

the secure communication. To avoid the need to do an

exact synchronized key change, there are always two

keys valid: the current and either the previous or the

next.

OVERLAPPING ROLLING COMMUNICATION KEYS

If a new key is derived every hour, then to allow for

time deviations among the participants, it shall be

valid 30min before and 30min after its main window

of validity (half time). This method allows participants

to not worry about the exact time the next key

becomes valid, and they can already generate the next

key well before it will be used for the first time.

Group Security

In group security, all Participant roles in secure

communication use the same time-based derived

rolling communication keys. Therefore, any member

of the group can consume and produce any part of

secure communication. The time synchronization is

performed by a single Sync role. The optional

OLAF PFEIFFER 3

Configurator role is only used during setup and

maintenance to configure the system.

Transmitters use a combination of the current

timestamp and a network/message address as

uniqueness/nonce input to the AEAD function. Each

communication exchange includes the least significant

portion of the timer (will be restored to full length and

can used to determine if arrival time is within an

acceptance window) and an authentication tag.

Applying Small-Packet Network

Security to CAN FD / CANopen FD
For mapping the above-mentioned methods to CAN

FD and CANopen FD, the goal is to have all devices

connected being participants in encrypted and

authenticated communication. Therefore, all devices

require a pre-shared key.

For the KDF and AEAD function there are currently

various cryptographic methods reviewed for their

performance and resource requirements. The

candidates include AES-GCM, ChaCha20-Poly1305,

Ascon for AEAD and HKDF/SHA-256 for KDF.

The last 8 bytes of any CAN FD / CANopen FD frame

are used for holding a security stamp holding a

combination of the current portion of the

synchronized timer and a 48-bit authentication tag.

Note that in CANopen FD there is a maximum payload

size of 64 byte. Since the security stamp occupies 8

bytes, the actual payload length needs to be reduced

to 56 bytes. With that setting, CANopen FD will not

produce CAN FD frames with a payload larger than 56

bytes.

The microTLS implementation uses 64-bit values for

randomness from both Client and Server and 64-bit

authentication tags in both finished and data

transfers. For classical CAN these could be reduced to

48bit.

The synchronized time is a randomly initialized by the

sync role responsible for maintaining the,

synchronized, free-running 64-bit timer incrementing

every 100 microseconds. Upon initialization

participants use a microTLS transfer to authenticate

the initial synchronized timestamp received.

Communication key derivation happens on overrun of

bit 24 of the 64-bit timer, so roughly every 30 minutes.

The upper bits 24 to 63 are used as salt input to the

KDF when generating the rolling communication key

matching a particular timestamp.

About this Document
By

Olaf Pfeiffer of Embedded Systems Academy GmbH

August 2024.

Embedded Systems Academy

www.em-sa.com, info@esacademy.de

Institute of Reliable Embedded Systems

and Communication Electronics

 (ivESK) Prof. Axel Sikora

This Project is supported by the Federal Ministry for

Economic Affairs and Climate Action (BMWK) on the

basis of a decision by the German Bundestag.

http://www.em-sa.com/
mailto:info@esacademy.de

