CANopenlA

Serial Remote Access to CANopen

for firmware version 1.10 or higher

B ESA

Rev. 1.12 of 22" January 2024

Published by CANgine products by

Embedded Systems Academy GmbH Embedded Systems Solutions GmbH
Bahnhofstralle 17 Industriestrale 15

D-30890 Barsinghausen, Germany D-76829 Landau, Germany
www.esacademy.com www.essolutions.de

COPYRIGHT 2014-2024 BY EMBEDDED SYSTEMS ACADEMY GMBH

http://www.esacademy.com/
http://www.essolutions.de/

CANopenlA Remote Access and Library User Manual

B 14} o oo [ot o1 DO P P PP PUPPTPP PP 5
2.1 CANOpeNn Object DIiCtioNary.......coouuuiiieeeeieiiiiieee et e e eierreee e e e 6
2.2 CANOPEN MANAGETciiiiiiiiiiiiiiiiiitiiieittttttttteeteeteeeeeeeeeseeeeeeeseeraassassasseasssssssnnnes 6

)00 611 1=1 o | SO P PSP P P PPPPTPP PP 6
NMT Master and Heartbeat monitoring..........ccccoeeeeeiii 7
Automated PDO handling......cccoeeeeeeeeeieiceccccee s 7
2.3 LOW 1@Vl @CCESS.....eviiiiiiiiiiiitiee et 7

3 Hardware OptioNnS ..o, 8
3.1 CANEGINEBEITY ..ttt e e e et et s s e e e e e eetbb e e e e e eeeabaaneeeeeeeeneees 8
3.2 (072 V7= 1 0 TSI = o | PPt 8
33 CANGINEII BT ottt ettt et e s e e e e e s e e e 9
34 PCAN-RS232...ceeeeeeeee ettt ettt et e e st e e st e st e e s e e e e 9
3.5 Library for PCAN INTEITACES ...uuuuuee s 9
3.6 (OIS o]0 1Y, FoTo [V1 <o) g @1 o 1o TP PPNt 9
3.7 WaKeUP @Nd SIEEP ...vveeeeeeieiiiiiiietei s 10

Y =T 0 g oloTa ¥ i F={U] =14 o] s IO PPPPPR 11
4.1 Bitrate and node ID Selectioneievieeeiiiiee i 11
4.2 Loading @ binary EDS.... ... s 11

Generic CANopenlA configuration load SEQUENCE.........uuuuuiiiiiiiiiiiciceeeeee e 13
Using ESAcademy’s CANopen File Player or CANopen Diagcceeeveeeeeeeeeennnnn. 14
Using ESAcademy’s CANOPeNn MagiC........cccoeeiiiiiiiiiiiiiiceeeeeeeeeeeeeeeeeeeeeeeee, 15
Direct chip flashing / programming.........ccccvvvieiieieiiciiiieeeeee e 17
4.3 Step-by-step custom configuration example............ceevveveviiiiiiiiiiiiiiiiiieiinnannn, 17
Create @ CONfIGUIatioN.uueeiiiiiii s 17
Export the configuration ... 17

Load the configuration..........ccooooii 18

Introduction

5 Minimal Manager SDO & PDO Handling.........coccuueieiiiiienniiee e 19
5.1 CommuNICation OPLIONScciiiiiiiiiiiiiiiiiiiiiiiiiiiiire e 19
Receiving TPDO data from the devicesoooviiiiiiiiieiiiiieeeeee e 19
Sending data t0 the deVICES......cciiiviiiiiiiiiii e 20

6 The Remote ACCeSS ProtOCOlccciiiiiiiiiiiiiiiieeiiiiieee ettt e e 23
6.1 DEfiNITIONS .ot 23
6.2 ErTOr COUBS ...t 25

7 Commands, Responses and Indicationsccccceeviiiii, 26
7.1 Access to local Object DICtioNary 26
Indication "D": New process data written to local Object Dictionary 26
Command "W": Write to a local Object Dictionary entry.......ccccoceeevveeiiiciicincceeennn. 28
Response "W": Write (I0cal) re@SPONSEuvvvieieeeeiiiiiieee e rrree e 29
Command "R": Read from a local Object Dictionary entry.......cccccceeeeeeevecieiieiienennn. 30
Response "R": Read (I0Cal) r@SPONSEcccuuvviiieeieeiiiiieeee e 30

7.2 ACCESS 0 OthEr NOTESeeiiiiiiiiiiiee et 31
Command "S": Write to a remote Object Dictionary entrycccceeeeeeeveeeeeeeeeeeennn. 31
Response "S": Write (remote) reSPONSE.......uuveeeeeeeiiciiirieeeeeeeeecetirreeeeeesseerrraeeeaeeens 32
Command "U": Read from a remote Object Dictionary entrycccceeeeeeeeeeeeeeennnn. 33
Response "U": Read (remote) reSpoNSe.......cccceeiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e, 33

8 Remote Access Application Example.........ccccooi, 35
9 Object Dictionary entries in the manufacturer specificarea......................c. 38
NAMIE e 38

9.1 CANOPENIA DEVICE StatUS...uuuiiiiiiei it eeaaaes 38
Device Status: OWN NOAE IDviiiiiiiieeiiiie ettt ettt 38
Device status: own NMT state......cooooviiiiiiiii 38
Device status: own HW state.........cceeiiiiiiiii 38
Device status: own HW/FW modeoooooiiiiiiiiiiiii 38

Chip serial number (where available)........ ... 39

CANopenlA Remote Access and Library User Manual

9.2 CANOPENIA DEVICE CONLIOL....ciiiiiiiiiiiiiiieiiee ettt
DEVICE CONTIOL: RESEL ..coneiiiieieiiiee ettt ettt e e st e e abee s
Device control 447: Sleep ObJectionccccuveiiieieiieiiiiieeeee e
Device control 447: Ignore PDOS from VD......cccuueiiiiiiieeiiiiee et
Manager control (ManNAgEr ONIY)c.uiieiiiiieieiee ettt
Default heartbeat producer time (manager only)......ccccceveeeeiiiciiiieeie e,
Default heartbeat consumer time (manager only)cccceeeeeviecciiieeie e,
Default PDO update time (Manager ONly)eeeeeeeiicciieeeeee e serre e
Default PDO transmission event time (manager only)cccccoeecvviveeieeeeiccciieeeeeeenn,
Default PDO transmission inhibit time (manager only).......ccccoeeciiieeieeeiicciiieeeeeenn,
Manager re-scan device (Manager ONlY)eeeeeeeiiiciiieee e

9.3 Status of @ll NOAES........eeiiiiiiii e
Last known state of NOAe 1........oeiiviiiieiiiiiieeee e
Last known state of NOde X.......vvviiiiiiieiiiieeee e

9.4 NMT Master MESSAZE .. cevvueiiiiiieeeiieeeeiiee ettt e eeteeeeteeeeerasseetnnserernsererannens
Transmit NMT (Manager ONIY)uuuueeeee et e e e e e arrree e e e

9.5 Manager: Automatic NOdE SCaNuuuiiiic s

Introduction

2 Introduction

The CANopen coprocessor (447izer if in CiA447 mode) implements a CANopen device, or
a simplified CANopen manager, depending on firmware version. A host system can
communicate with the CANopenlA coprocessor via a regular serial channel. The protocol
used is ESAcademy’s CANopen remote access protocol described in this document. The
CANopenlA coprocessor handles all CANopen communication.

Serial

interface

COPROCESSOR WITH HARDWIRED SERIAL INTERFACE

The serial interface can either be directly connected (wired), or it can be a wireless con-
nection, for example using a serial Bluetooth connection.

Host App

. CANopen
network

Bluetooth ¥
interface

A Bluetooth /I CAN ¥

I interface : interface I|

COPROCESSOR WITH BLUETOOTH SERIAL INTERFACE

CANopenlA is also available as a library version. In this case, each serial command, re-
sponse and indication is mapped to a function or call-back function of an API (Application

Programming Interface).

CANopenlA
Library

Main T)/

Program " interface I

network

CANOPENIA LIBRARY RUNNING DIRECTLY ON A HOST SYSTEM

CANopenlA Remote Access and Library User Manual

As required by any CANopen device, the CANopenlA/447izer implements a CANopen

Object Dictionary (OD) that contains all configurations of the chip itself as well as all the
process data communicated. This OD is available to the CANopen network as well as to
the host. Which OD entries are present in the CANopenlA depends on its configuration.

Default configurations are provided for all CANopenlA implementations. Customized
configuration file can be generated using the CANopen Architect EDS Editor and trans-
ferred into the flash memory of the CANopenlA.

CANopenlA

Serial) \ Serial » CANopen

interface interface interface network
Sk

Object Dictionary

Index, Subindex, Data

Index, Subindex, Data
Index, Subindex, Data

OBJECT DICTIONARY IS ACCESS FROM SERIAL AND CANOPEN SIDE

In CANopen, managers provide several functionalities. The ones provided by CANopenlIA
are listed in this section.

SDO Client

The CANopenlA-MGR and 447izer versions also support SDO client services. Once such a
CANopenlA device is up and running (CANopen state operational), it may send CANopen
SDO (Service Data Object) read and write requests to the nodes connected to the CANo-
pen network. This gives the host application read and write access to all the Object Dic-
tionaries of all connected nodes.

Introduction

Note that in regular CANopen this means that this device uses the regular SDO client
channels used by a CANopen Manager. DO NOT use this mode, when another CANopen
Manager is present and using these channels at the same time.

The CANopenlA-MGR firmware also provides the CANopen NMT (Network Management)
Master functions to control the individual nodes connected. The firmware can autostart
known devices to facilitate a quick start up of CANopen systems.

A default heartbeat time and timeout monitoring can be automatically activated. If de-
vices are lost (no more heartbeat received), the master automatically transmits a reset
request to these nodes for automated recovery support.

The minimal CANopen manager supports an automated PDO (Process Data Object) han-
dling. PDO configurations of connected devices are analyzed and activated. The host is
informed about every PDO received from all devices. The information passed on to the
host for data received includes node ID, object info (index, subindex) and the data.

The Software also implements a generic low-level access mode. If this mode is activated,
then any CAN message can be transmitted by the host and CAN messages received are
reported back to the host. An optional CAN message ID filter allows selecting the CAN
messages that should be received.

| CANopenlA Remote Access and Library User Manual

3 Hardware options

3.1 CANgineBerry

The CANgineBerry is a CANopenlA module intended for the Raspberry Pi. It has a CAN

(DB9) connector and only uses 4 pins for the connection to the Raspberry Pi: +5V, GND
and the 3.3V Rx/Tx signals of the serial channel. Both CANopen RUN and ERR LEDs are
provided.

The module can also be used with any other host system that provides the 4 required
pins. If the preferred communication channel to a host is USB, then a USB-UART chip can
be used as an interface between the host and the CANgineBerry. In that case verify that
the correct voltage levels are used, the CANgineBerry requires +5V for the power supply
but only uses 3.3V on the Tx/Rx lines.

- "K

Hoes L { CANgineBerry CANopenlA]]

|
[
|
[5 = .
. Serial L CANopen
interface i i : > network

Object Dictionary
Index, Subindex, Data

Index, Subindex, Data

Index, Subindex, Data

Index, Subindex, Data

CANGINEBERRY SYSTEM OVERVIEW

3.2 CANgine Light

The CANgine Light by Embedded Systems Solutions GmbH is a small device with a CAN
connector on one side and a RS232 (DB9) connector on the other. Power is supplied via
the CAN connector. The RS232 side can be directly connected to most USB-RS232 con-
verters. Both CANopen RUN and ERR LEDs are provided but no further optional inputs or
outputs.

Hardware options

The CANginell BT by Embedded Systems Solutions GmbH is a small device with a CAN
connector and an internal Bluetooth module. Power is supplied via the CAN connector.
On the connecting Bluetooth device, the CANginell BT appears like a generic serial de-
vice. Both CANopen RUN and ERR LEDs are provided but no further optional inputs or
outputs.

The PCAN-RS232 module is a boxed CAN to RS232 module with industrial style open
connectors.

The CANopenlA functionality is also available as a Microsoft Windows® DLL for PEAK’s
CAN_API4 supporting the PCAN interfaces from PEAK System. When used as a library, all
commands, responses and indications are provided as functions and call-back functions.

The CANopenlA Coprocessor is available as a module or chip for direct integration into
your hardware. The number of pins used is minimal, the input, output and LEDs are op-
tional.

CANopenlA

. —— |: MODE
V+ Optional —— |: AUTORUN
GND Input — |: WAKEUP
= |: USER

XTALIN ——— (o[IEI—=——— O: PWR
XTALOUT =t Output —— (: SLPRQ
Optional —— RUN LED
LEDs ~— ERR LED
T R S g/?l\? L or CAN RX
- z, p— or
Rx interface | interface CAN”H or CAN_TX

SIGNALS OF THE CANOPENIA CHIP OR MODULE

CANopenlA Remote Access and Library User Manual

CANopenlA coprocessor implementations are available for the following microcontrol-

lers:

NXP LPC11C24

uses internal transceiver, can be directly connected to the CAN_L and CAN_H
lines of the CANopen network

ST-Microelectronics STM32F091 or STM32F042

requires an external transceiver and connects to the CAN_RX and CAN_TX pins

The optional input signals are:

MODE:

Set high if used in CiA 447 mode, else low for regular CANopen mode
AUTORUN:

Set high if device should autostart (directly switch itself into operational mode),
not recommended for CiA 447

WAKEUP:

A rising flank on this pin wake ups the chip / module if it was in sleep, the device
then produces the wakeup messages

USER:

Input pin for customizations

The optional output pins are

PWR:

Produce a rising flank on wakeup

SLPRQ:

Set high, if sleep request was received from power manager

In CiA 447 mode the chip wakes up upon detecting any activity on the serial channel, the
CANopen channel or the wakeup pin. It then participates in the CANopen wakeup com-

munication.

Upon reception of the sleep request from the CANopen power manager the device for-
wards this request to the serial interface and then sets itself into sleep mode.

System configuration

The CANopenlA implementation is configured by the local Object Dictionary. This is
stored in Flash memory and can be re-loaded. The format used is ESAcademy’s binary
EDS file format, which is exported by the CANopen Architect EDS utility for Editing CAN-
open Electronic Data Sheets (EDS). Depending on CANopenlA firmware, a variety of de-
fault configuration files are provided.

CANopenlA
Documentation

External
Specification

doc / pdf

CANopen Architect
Standard / Professional

CANopenlA
Configuration

binary eds

GENERATING A CONFIGURATION WITH CANOPEN ARCHITECT

In addition, some firmware versions support customized configurations. If an EDS or
CODB (CiA format for Object Dictionary definition) already exists specifying the configu-
ration, then this can be imported into the CANopen Architect software. After edit-
ing/modifying the configuration, a current EDS and binary EDS are exported. The binary
EDS is directly loaded into the CANopenlA device, module or chip.

The bitrate and node ID settings are also made through the binary EDS. The host system
cannot change these settings. If the configured node ID is zero, then LSS (Layer Setting
Services) are used to get a node ID assigned by the LSS Master.

When using a CANopenlA library, the binary EDS file with the configuration to be used is
passed to the library upon its initialization. All other implementations store the configu-
ration in EEPROM. The binary EDS configuration is located in the Object Dictionary entry

CANopenlA Remote Access and Library User Manual

[1F50h,2h]. This entry is only accessible after a version dependent activation sequence
has been used to set the CANopenlA into bootloader mode.

The default method for loading the file is via CANopen SDO communication. Any CANo-
pen Manager or configuration tool like CANopen Magic can be used to send the boot-
loader activation sequence and the binary EDS configuration.

CANopenlA ‘ CANopenlA

Serial CAN : Configuration
interface CANOPEH Mag'c ——
.

Object Dictionary

Index, Subindex, Data
Index, Subindex, Data

Index, Subindex, Data

Index, Subindex, Data

LOADING A CONFIGURATION INTO CANOPENIA - vVIA CANOPEN

The CANgineBerry supports loading the configuration file through the serial interface.
This gives the host full configuration control, as it can activate any desired configuration
by itself.

The CANgineBerry must follow the bootloader activation sequence (to prohibit acci-
dental misconfigurations). Once the bootloader is activated, the binary EDS file can be
written to the [1F50h,2h] entry. Internally, the CANgineberry then transfers the new
configuration to the EERPOM and activates it upon the next system re-start (reset or
power cycle).

System configuration

CANgineBerry CANopenlA

LE] ~. Serial EEPROM CAN
interface interface | Config interface

Object Dictionary

Index, Subindex, Data

Index, Subindex, Data
Index, Subindex, Data

Index, Subindex, Data

L — i —

|
|
|
|
|
|
|
I binary eds
|
|
[
|
|
|
|

LOADING A CANGINEBERRY CONFIGURATION - VIA HOST

Generic CANopenlA configuration load sequence
The default sequence to activate the configuration bootloader is as follows:

1.) For CiA 447 only (typically done by IVN gateway):
wake-up the device and assign it a node ID using LSS Master services

2.) Ensure the CANopenlA device is in pre-operational mode using the NMT Master
message (not required with CiA 447 version)

3.) Read the device’s serial number with an SDO client read,
Object Dictionary entry [1018h,4h]

4.) Write the device’s serial number to the Program Data with an SDO client write,
Object Dictionary entry [1F50h,1h]

5.) Write “0” to the device’s Program Control entry with an SDO client write
Object Dictionary entry [1F51h,1h]

The CANopenlA device now resets and boots up in bootloader mode with a default node
ID of 70h.

6.) Write the binary bootloader EDS file to the Program Data Object Dictionary en-
try [1F50h,2h] (of node 70h) with an SDO client segmented write access

After a successful transfer of the configuration, the CANopenlA device re-starts itself.

The trace recoding shows the sequence starting at step 4) — writing the serial number. In
this example the CANopenlA node has the node ID 2 and the serial number 04040D41h.

CANopenlA Remote Access and Library User Manual

After the initial two SDO writes, the device re-starts with node ID 70h. Then the configu-
ration is written. Last step is to re-activate the regular program by writing 1 to the Pro-
gram Control entry. The Error reset emergency confirms that the CANopenlA application
is now started again.

ID Message Type Node Details Data (Hex)

0x602 SDO Download Request 0x02(2) [0x1F50,0x01] Write Program Data 1, expedited 410D 0404

0x582 SDO Download Response 0x02 (2)

0x602 SDO Download Request 0x02(2) [0x1F51,0x01] Write Program Control 1, expedited 00

0x582 SDO Download Response 0x02 (2)

0x770 NMT Status 0x70(112) Bootup

0x670 SDO Download Request 0x70(112) [Ox1F50,0x02] Write Program Data 2, fragmented, 2217 bytes

0x5F0 SDO Download Response 0x70(112)

0x670 SDO Download Segment Request 0x70(112) toggle =0 02 00 00 04 00 00 FA
O0x5F0 SDO Download Response 0x70(112) toggle =0

0x670 SDO Download Segment Request 0x70(112) toggle =1 2000 00 00 02 00 00
0x5F0 SDO Download Response 0x70(112) toggle =1

0x670 SDO Download Segment Request 0x70(112) toggle =0 00 50 4F 43 4D 03 00
0x5F0 SDO Download Response 0x70(112) toggle =0

0x670 SDO Download Segment Request 0x70(112) toggle =1 02 OF FE 00 B4 5F DE
0x5F0 SDO Download Response 0x70(112) toggle=1

0x670 SDO Download Segment Request 0x70(112) toggle =0, last segment 00000001 FF
O0x5F0 SDO Download Response 0x70(112) toggle =0

0x670 SDO Download Request 0x70(112) [0x1F51,0x01] Write Program Control 1, expedited 01

O0x5F0 SDO Download Response 0x70(112)

OxOF0 Emergency 0x70(112) [0x0000 (0)] Error reset or no error 0000 0000 00

TRACE RECORDING OF THE CONFIGURATION LOAD SEQUENCE

The configuration load sequence can be executed by any software or device supporting
ESAcademy’s Extended Concise Device Configuration Format (xCDCF). This is an exten-
sion of the standard CANopen CDCF that allows flow control and integration of files. The
base format is a .CSV (comma separated values) file with the sequence commands.

Comment Command Index Subindex Type Data

Name FILE_INFO STRING Activate bootloader

Version FILE_VERSION STRING V1.01 of 13-JAN-17
SETTING_NODE_ID UNSIGNED8 0x02
CONTROL_SDO_READ UNSIGNED8 0x80

Read serial number 0x1018 0x04 UNSIGNED32 1
CONTROL_SDO_BUFFER UNSIGNED8 0

Write back serial number Ox1F50 0x01 UNSIGNED32 0

Stop program 1 Ox1F51 Ox01 UNSIGNED8 0

Change Node ID SETTING_NODE_ID UNSIGNED8 0x70

Wait for bootup CONTROL_WAIT_FOR UNSIGNED8 0x00

Write configuration Ox1F50 0x02 DOMAIN CiA447_config_bl.hbin

Flash delay CONTROL_PAUSE UNSIGNED16 2000

Back to application Ox1F51 Ox01 UNSIGNEDS 1

XCDCF CONTROL FILE FOR THE CONFIGURATION LOAD SEQUENCE

System configuration

In the example above, the CANopenlA node ID is 2. It’s serial number is read to an inter-
nal buffer and written back to the program data field.

Any CANopen configuration tool can typically be used to execute the steps of the se-
quence manually step by step.

Note that 447 devices set themselves to sleep after a timeout period without detection
of a gateway. So when executing the sequence manually without a gateway, the CANo-
penlA device might shut itself down again, if the sequence takes too long to execute.

The screen shots below show the individual steps executed with the SDO access func-
tions provided by CANopen Magic.

Readk (02 (2), Identity n
Node: |- 0x02 (2) ~|
Entry: |[Gc1018,0¢04] Idertty - Serial Number (Unsigned32) || Select..

Trigger: |None | Edit...

(® Display Data as: | Unsigned32 ~

Data: (000000000 (D) ‘

(0) Save Datain:

Read

READING THE SERIAL NUMBER

Write: 0x02 (2), Download... n
Node: |- 0x02 (2) ~]
Ertry: |[0x1F50.0x01] Download Program Data - Program 1(Domain) | | Select...

Trigger: |None | Edit...

(®) Enter Data as: Unsigned32 i

Data: ‘mmmmm ‘

(O Load Data from:

Wirite:

WRITING IT BACK TO THE PROGRAM DATA ENTRY

CANopenlA Remote Access and Library User Manual

Write: 002 (2), Program .. n

Node: |- 0x02 (2) v

Entry: |[0<1F51,0x01] Program Cortrol - Control Program 1 (Unsigneds) | | Select... |

Trigger: |None || Edit... |
(® Enter Data as: | Unsigned® ~ |

Data: |ﬂ |
() Load Data from: Browse. .

STOPPING THE CURRENT RUNNING PROGRAM

Write: 070 (112), Download... n
Node: |q: 070 (112) v|
Entry: |[{k1FH].[kﬂ2] Download Program Data - Program 2 (Domain) | | Select... |

Trigger: |None | | Edt... |

(O) Entter Data as: Domain e

Data:
@ Load Datafrom: [GiA447_cortig_bi hbin | | Bowse.. |
Write

LOADING THE CONFIGURATION

Write: 0x70 (112), Program ... n
MNode: |~q 0x70(112) v|
Entry: [[¢1F51,0¢01) Program Control - Control Program 1 (Unsigned8) | | Seleet... |

Trigger: |None | | Edit... |

(® Erter Data as: |Unsigned8 V|

Data: 1
(O Load Data from: Browse. ..

RE-STARTING THE PROGRAM

System configuration

If you use a custom CANopenlA chip solution integrated into your hardware, the configu-
ration can be flashed into the chip at the same time the CANopenlA binary code is
flashed using the internal UART bootloader or the JTAG/SWD pins.

See the hardware specific manuals for the various CANopenlA variations for more de-
tails.

Configurations are created and maintained with ESAcademy’s CANopen Architect utility
to edit Electronic Data Sheets (EDS). Example configurations are provided as part of the
delivery.

To start your own configuration, duplicate the “CiAxxx_Minimal” device and rename it to
your own project. Review and edit the settings in the “File” and “Device” sections, as
well as the object dictionary entries 1008h to 100Ah and 1018h.

Now add the entries that you still require for your device by copying them from the
“CiAxxx_AllEntries” section or by adding them manually.

To create the binary EDS configuration file required by CANopenlA devices, select “Ex-
port Binary EDS for Bootloader” from the local menu.

This creates a “.bin” file containing the binary EDS.

CANopenlA Remote Access and Library User Manual

File

e B9EE OB

Edit

View

Help

| Project Explorer

-

[+)= N)

4 i Electronic Data Sheets
([} CiA447_AlErtres 3 S

1 ox|

| CA44T_MErmes | CiA447 Minmal ' § GiA447_Work |

4k

x

20 2vQ Q& ¥ ZBFO0

> @* Configurations
File

([} Citd47_Minimal [Device
[Cimd47
Rename
Q Delete
[} Duplicate
(& Export EDS/DCF... eld
pe b
f'_l Export MicreCANopen Plus Sources... Wware
@ Eqort Binary EDS... o)
(@ Export Binary £D5 for Bootloader... '.I:ﬁ
Export Binary EDS Sources...
T
G Export Documentation TF

‘b

Reserved

{l i

b @ 1F50 Program Data

[x1F51 Program Control

[Qc1F80 NMT Startup

Manufacturer Specific

Standardized Device Profile

3 § (6000 Yitual device support
[12] x6110 Taxd alam system statu

Standardized Interface Profile

General

[0x6110,0x00] Taxi alarm system status

Entry Name: Taod alarm system status

Subentry Name:

-
Data Type: | Unsigned16 -
PDO mappable

Subentries:

Values

T —

Type ndexcc |

Refuse write on download

Refuseread on &

Defautt: (FFFF

Low Limit

High Limit

Device Configuration

Value:

Denotation:

Code Generation

-

h

m

EXPORTING A CONFIGURATION FROM CANOPEN ARCHITECT

Load the configuration

The “.bin” file created can directly be transferred to the CANopenlA device as described

in the previous section using utilities like the CANopen File Player or CANopen Magic.

Minimal Manager SDO & PDO Handling

The CANopenlA Minimal Manager version simplifies how an application uses CANopen
communication. Here all data is only referred to by a node ID and the Object (Index and
Subindex) to address ab object in a node’s object dictionary.

Using the write and read to a remote object dictionary functions, the host system can
read and write all objects in a network.

In addition, the host system receives event notifications, if data came in from a remote
object. Again, referred to by the node ID the data comes from and the object dictionary
entry (Index and Subindex).

If your application is generic and does not require optimized communication (e.g. to
lower the bus load for communication or achieve shorter reaction times), the this is all
you need to know.

The default CANopen communication mode used by the CANopenlA-MGR is the SDO
communication (Service Data Objects). Here the manager sends one read/write request
for a single object of a node and receives one response.

Internally, the manager scans detected devices for their PDO (Process Data Object) con-
figuration. The scanned information is used by the minimal manger to configure itself for
receiving all Transmit PDOs transmitted by the devices and for transmission of all Receive
PDOs to the devices.

The application requires no knowledge about the Transmit PDO configuration of the
devices. Once self-configured, the minimal manger receives all PDOs generated by the
devices and converts them into the corresponding “New Data” indication events towards
the host or application. The application automatically receives all PDO data.

For each object received, the host/application is informed about:

e The node ID which sent the data
e Which Object of that node was received (Index/Subindex)
e The data itself

CANopenlA Remote Access and Library User Manual

Sending data to the devices

The application addresses the data in the same fashion as for received data. It uses the
WriteRemoteOD functionality and informs the CANopenlA Manager about:

e The node ID to which the data needs to be send
e Which Object of that node is it going to (Index/Subindex)
e The dataitself

The manager automatically determines if this data can be send by PDO or if a SDO needs
to be triggered. As PDOs can have multiple objects mapped (multiple object contained in
one CAN message) all mapped items must be written at least once, before the PDO can
be transmitted by the manager. This is required to prohibit transmission of uninitialized
data/commands to a CANopen device.

We recommend that once the application receives the call-back that a mode has been
scanned, it writes once to all objects of that device that can be written to, to ensure all
data has been initialized.

WriteRemoteOD

data -> tx buffer

start uptime*5 start uptime Send as SDO
| i

4 SDO reponse
ACK to host to host

PROCESSING REMOTE DATA WRITE REQUESTS

The flow chart above illustrates how the manager processes data write requests to
nodes on the network. If the data written is not part of any PDO, it gets written to the

Minimal Manager SDO & PDO Handling

node using a SDO client write access. Once the SDO response comes back from the node,
this response is passed on to the host.

Otherwise the data is copied to the appropriate buffer and the PDO update timer is han-
dled. If it is the first use, then the timer value is multiplied with 5 to give the host more
time to write all the data to init the PDO. The PDO gets queued/triggered ready for
transmission once the PDO update timer expires.

Internally, the CANopenlA system continuously checks if a PDO requires transmission
(see next flow chart “PDO trigger task”.

PDOs are only processed for transmission, if data is available and the update time ex-
pired.

PDO trigger task

data?

CANopen
PDO tx handler

PDO TRIGGER TASK

If both the default event and inhibit times (objects [5F01h,05h] and [5F01h,06h], see
section 9.2) are zero, then a PDO is triggered for transmission whenever the
update time expires (time since last write by the host) or the last mapped entry
has been written.

Once set (non-zero), the event and inhibit times work as defined in CANopen:

If the inhibit time is set (non-zero) and the event time is zero, then any repetitive
transmission is only transmitted, if the time since last transmission is at least as
long as the inhibit time.

CANopenlA Remote Access and Library User Manual

If the event time is set (non-zero) and the inhibit time is zero, then the PDO is
transmitted cyclically, no matter if the data has been updated by the application or
not.

If both times are set, then they are combined. If triggered by host (expiration of
update time), then the PDO gets transmitted, observing the inhibit time. Without
host triggering, the PDO is transmitted cyclically based on the event time.

The Remote Access Protocol

This chapter specifies the commands for controlling the CANopenlA Coprocessor via a
serial interface. The protocol is suitable for tunneling through other networks such as a
Bluetooth or TCP connection as well as for communication between a CANopen task and
a host task within one system.

The communication between the host and the CANopenlA is based on messages with
binary content and a check sum.

Byte or UNSIGNEDS:
8-bit, unsigned value

UNSIGNED16:
16-bit, unsigned value

UNSIGNED32:
32-bit, unsigned value

Host:
The processor or application controlling the CANopen CANopenlA via the interface speci-
fied in this document

Command:
Message from host to CANopenlA with a request to execute a command.

Response:

Message from CANopenlA to host in response to a command. Every command triggers a
response. Some responses may take longer as CANopen communication might be in-
volved. As a result one or multiple Indications might occur before receiving a response.

Indication:
Message from CANopenlA to host indicating the host that an event occurred.

Max data size:
In this version, the maximum user data size is 28 bytes. Including overhead, this results in
a maximum serial packet size of 35 bytes.

Message Definition
Any message exchanged between Host and the CANopen node use the following struc-
ture (all Bytes):

CANopenlA Remote Access and Library User Manual

<start character><length><command/response/indication><checksum>
Multi-Byte values are transmitted in little-endian format.
<start character> (Byte) default: 11h

1. Bits O to 3 indicate the network number, the value of zero is reserved,
the default is one.

2. Bit 4 indicates if a checksum is used or not. If set, checksum is used, the
default is one, using a checksum.

3. Bit 5 indicates if the length value has 8 or 16 bit. If set, 16 bits are used,
the default is zero, using 8 bits for the length value.

4. Bits 6 to 7 are reserved.
<length> (Byte or UNSIGNED16, see Bit 5 of start character)
The total length of the command/response/indication in bytes.
<command/response/indication>

The data transferred in this packet can be a command, a response or an indication. For
details see specifications below.

<checksum> (UNSIGNED16 or not used, see Bit 4 of start character)

A 16-bit CRC calculated with the Polynomial x16 + x15 + x2 + 1. The checksum calculation
does not involve the start character.

The Remote Access Protocol

Most of the responses contain an error code field. A value of zero means "no error". The
bits in the error code field have the following meanings:

Bit | Meaning

Object Dictionary entry not found

Invalid command length

Invalid command

Busy (e.g. SDO client is currently in use)

No resources (e.g. internal problem obtaining an SDO

Transmit buffer is full

Transfer was aborted

Receive buffer size was too small

SDO toggle error

O|lo|N|O|U|A~WINF O

SDO timeout

[EnY
o

Unknown/miscellaneous error

[EEN
[N

Not supported

[EY
N

Node not available

[EnY
w

Non-volatile memory write failure

[
N

Not all PDO mapped objects written

CANopenlA Remote Access and Library User Manual

7 Commands, Responses and Indications

7.1 Access to local Object Dictionary

The commands, responses and indications of this section are used to access the local
object dictionary of the CANopenlA Coprocessor.

The syntax shown is split into the serial version “Serial” (on lowest level, treated as an
array of bytes) and the “C” style function interface, if used in the library version.

Indication "D": New process data written to local Object Dictionary

. datafrom
interface inte;f\ace inter'face ; network

Object Dictionary

Index, Subindex, Data

Index, Subindex, Data

Index, Subindex, Data

Index, Subindex, Data

Automatic indication of new data written to Object Dictionary

New process data arrived from the CANopen network and was written to a local
Object Dictionary entry. The node ID of the sender (if known), the Object Diction-
ary entry in question and the new data is part of this indication. This applies to
both data received by SDO and PDO access. Data size is indicated via length
field of lower communication layer or length parameter when use is a library.

In minimal manager and CiA 447 mode ALL CiA defined/known PDOs are re-
ceived and cause an indication. Advanced versions allow setting of optional filters
to ignore unwanted PDOs.

Commands, Responses and Indications

Serial: D<nodeid><index><subindex><data>

C: void COIACB NewData (
UNSIGNED8 nodeid,
UNSIGNED16 index,
UNSIGNED8 subindex,
UNSIGNED16 length,
UNSIGNED8 *data

) ;

<nodeid> (UNSIGNEDS):
The node ID of the device sending this data.

<index> (UNSIGNED16):
The index of the Object Dictionary entry.

<subindex> (UNSIGNEDS):
The subindex of the Object Dictionary entry.

<length> (UNSIGNED16):
Library interface only, length of the data.

<data> (UNSIGNEDS):
The data of the Object Dictionary entry.

CANopenlA Remote Access and Library User Manual

Command "W": Write to a local Object Dictionary entry

CANopenlA

Serial N Serial
interface integ‘ace

~

Object Dictionary

Index, Subindex, Data
Index, Subindex, Data

Index, Subindex, Data

Index, Subindex, Data

g o E— mEm EEm s s s EEm EEm s s s

Read or write command to local
Object Dictionary

Writes data to one local Object Dictionary entry. Data size is indicated via length
field of lower communication layer (see message definition).

Serial: W<index><subindex><data>

C: UNSIGNED32 COIA WriteLocalOD (
UNSIGNED16 index,
UNSIGNED8 subindex,
UNSIGNED32 length,
UNSIGNED8 *data
)

<index> (UNSIGNED16):
The index of the Object Dictionary entry.

<subindex> (UNSIGNEDS):
The subindex of the Object Dictionary entry.

<length> (UNSIGNED16):
Library interface only, length of the data.

Commands, Responses and Indications

<data> (one or multiple UNSIGNEDS):
The data to be written to the Object Dictionary entry.

library: return value of function (UNSIGNED32):
Error code or zero for no error.

Response "W": Write (local) response

Host App CANopenlA

Serial) Serial
interface interface
A

Object Dictionary

Index, Subindex, Data
Index, Subindex, Data
Index, Subindex, Data

Index, Subindex, Data

S o o s s EEm S s EEs EEm EEm EE s s s
- R RN R R R R NN B B B B e

Read or write response from local
Object Dictionary

The following message is a response from the CANopen device to every “W”
message processed.

Serial: W<index><subindex><err>
C: Not used (WriteLocalOD is blocking and returns values)

<index> (UNSIGNED16):
The index of the Object Dictionary entry.

<subindex> (UNSIGNEDS):
The subindex of the Object Dictionary entry.

<err> (UNSIGNED16):
Error code or zero for no error.

CANopenlA Remote Access and Library User Manual

Request to read data from one Object Dictionary entry. Data size is indicated via
length field of lower communication layer.

Serial: R<index><subindex>

C: UNSIGNED32 COIA ReadLocalOD(
UNSIGNED16 index,
UNSIGNED8 subindex
UNSIGNED16 *length,
UNSIGNED8 *data

) ;

<index> (UNSIGNED16):
The index of the Object Dictionary entry.

<subindex> (UNSIGNEDS):
The subindex of the Object Dictionary entry.

For remaining parameters see description below.

The following message is a response from the CANopen device to every “R”
message processed. Data size is indicated via length field of lower communica-
tion layer (see message definition).

Serial: R<index><subindex><err><data>
C: Not used (ReadLocalOD is blocking and returns values)

<index> (UNSIGNED16):
The index of the Object Dictionary entry.

<subindex> (UNSIGNEDS):
The subindex of the Object Dictionary entry.

<err> (UNSIGNED16):
library: return value of function (UNSIGNED32):
Error code or zero for no error.

<length> (UNSIGNED16):
Library interface only, length of the data.

<data> (one or multiple UNSIGNEDS):
The data read from the Object Dictionary entry.

Commands, Responses and Indications

The commands, responses and indications of this section are used to access
object dictionary entries of any node on the network. In CANopen terminology
these use SDO clients to communicate with the nodes addressed.

These commands require SDO clients which are only available when the Manag-

er or CiA 447 functionality is enabled.

Command "S": Write to a remote Object Dictionary entry

Host App CANopenlA

Serial CAN

interface

N Serial

II interface I interface I

CANopen Devicei

request
CANopen

Object Dictionary

Index, Subindex, Data
Index, Subindex, Data

Index, Subindex, Data l

Read or write request to a remote Object Dictionary of a node on the network

Writes data to one Object Dictionary entry of a remote node (using SDO client
access). Data size is indicated via length field of lower communication layer.

Serial:

C (blocking):
C (non-block):

UNSIGNED8 nodeid,
UNSIGNED16 index,
UNSIGNED8 subindex,
UNSIGNED16 length,
UNSIGNED8 *data

) ;

<nodeid> (UNSIGNEDS):
The ID of the node to write to.

S<nodeid><index><subindex><data>

UNSIGNED32 COIA WriteRemoteOD (
UNSIGNED32 COIA WriteRemoteODExtended (

CANopenlA Remote Access and Library User Manual

All other parameters are the same as with the WriteLocalOD command.

Note: only one remote SDO operation can take place at a time. This applies to
read and writes. An attempt to start a new SDO operation while one is still com-
pleting will generate an error.

Response "S": Write (remote) response

Host App CANopenlA

Serial CAN

I interface I interface I

CANopen Device}

CANopen

response

Serial

. CAN interface
interface o

Object Dictionary

Index, Subindex, Data
Index, Subindex, Data

Read or write response from a remote Object Dictionary of a node on the network

The following message is a response from the CANopen device to every “S”
message processed.

Serial: S<nodeid><index><subindex><err>

C (blocking): Not used (WriteRemoteOD is blocking and returns values)
C (non-block): void COIACB_SDORequestComplete (
UNSIGNEDS nodeid,
UNSIGNED32 abortcode
)i
<nodeid> (UNSIGNEDS):
The node ID of the remote node addressed.

<err> (UNSIGNED16):
Error code or zero for no error.

<abortcode> (UNSIGNED32, library only):
Zero if SDO transfer completed without errors, else SDO Abortcode.

All other parameters are the same as with the local write response.

Commands, Responses and Indications

Request to read data from a remote Object Dictionary entry (using SDO client
access, upload).

Serial: U<nodeid><index><subindex>

C (blocking): UNSIGNED32 COIA ReadRemoteOD (
C (non-block): UNSIGNED32 COIA ReadRemoteODExtended (

UNSIGNED8 nodeid,
UNSIGNED16 index,
UNSIGNED8 subindex,
UNSIGNED16 *length,
UNSIGNED8 *data

)7

<nodeid> (UNSIGNEDS):
The ID of the node to read from.

All other parameters are the same as with the WriteLocalOD command.

Note: On some limited implementations only one remote SDO operation can take
place at a time. This applies to remote read and writes. An attempt to start a new
remote operation while one is still completing will generate an error on these de-
vices.

The following message is a response from the CANopen device to every “U”
message processed. Data size is indicated via length field of lower communica-
tion layer.

Serial: U<nodeid><index><subindex><err><data>

C (blocking): Not used (ReadRemoteOD is blocking and returns values)
C (non-block): void COIACB_SDORequestComplete (
UNSIGNEDS nodeid,
UNSIGNED32 abortcode
)i
<nodeid> (UNSIGNEDS):
The node ID of the remote node addressed.

<err> (UNSIGNED16):
Error code or zero for no error.

CANopenlA Remote Access and Library User Manual

<abortcode> (UNSIGNED32, library only):
Zero if SDO transfer completed without errors, else SDO Abortcode.

Library version:

when the last command was the COIA ReadRemoteODExtended () command,
the data length and the data returned will be copied to the pointers passed upon
calling that function.

All other parameters are the same as with the local write response.

Remote Access Application Example

Open a command window and switch to the RemoteAccessApp folder.

\ CD C:\Program Files (x86)\447izer\RemoteAccessApp

Start the application by entering the executable name followed by the number of the
COM port the PCis using for the serial communication. For example:

RA_App.exe 8

Starting the application will wake up the 447izer if it is currently asleep, which will also
wake up the gateway if it is also asleep.

Micro CANopen Remote Access to Roof Bar Application by
www.esacademy.com
V2.21 of 29-APR-2014

Connecting to COMS8 port...
Connected to COMS8 port

Data in {NodelD:Index,Subindex;Data}-brackets is received in call
back functions.

{Hardware status changed to 0x00000009 - INIT RX-OVERRUN }
{Own node ID changed to 0}

{Own status changed to 240}

{Own node ID changed to 2}

{Node 2 status changed to 0x00 - BOOT?}

{Node 2 status changed to Ox7F - PREOP}

{Hardware status changed to 0x00000009 - INIT RX-OVERRUN 3}
{Own node ID changed to 2}

{Own status changed to 127} {1:6007,00; 00} {1:6050,00; 00 00}
{1:6053,00; FF FF} {1:6055,00; FF FF FF} {1:6050,00; 00 00}
{1:6053,00; FF FF} {1:6055,00; FF FFFF} {1:6050,00; 00 00}
{1:6053,00; FF FF} {1:6055,00; FF FF FF}

CANopenlA Remote Access and Library User Manual

{Node 2 status changed to 0x05 - OPERATIONAL}

{Own status changed to 5} {1:6050,00; 00 00} {1:6053,00; FF FF}
{1:6055,00; FF FF FF}

{Node 1 status changed to 0x05 - OPERATIONAL}

{Node 1 status changed to 0x90 - HB ACTIVE} {1:6050,00; 00 00}
{1:6053,00; FF FF} {1:6055,00; FF FF FF} {1:6050,00; 00 00}
{1:6053,00; FF FF} {1:6055,00; FF FFFF} {1:6032,00; FF FF}
{1:60B0,01; 00 00 00 00} {1:60B0,02; 00 00 00 00} {1:6080

,00; EO} {1:6082,00; FF} {1:6085,00; EO} {1:6087,00; FF}
{1:608A,00; EO}

As can be seen from the output the gateway assigned a node ID of 0x02 to the 447izer.
The 447izer then booted and wait into pre-operational mode. Finally the 447izer com-
pleted initialization and when into operational mode.

\ {Node 2 status changed to 0x05 - OPERATIONAL}

Here is what the output looks like if the 447izer was already awake and operating when
the remote access application is started:

Micro CANopen Remote Access to Roof Bar Application by
www.esacademy.com
V2.21 of 29-APR-2014

Connecting to COMS8 port...
Connected to COMS8 port

Data in {NodelD:Index,Subindex;Data}-brackets is received in call
back functions.

Requesting NMT state of node...

NMT State = Ox 5
{1:6050,00; 00 00} {1:6053,00; FF FF} {1:6055,00; FF FF FF}
Node 0x01 already SCANNED

Remote Access Application Example

Send command to ignore selected PDOs

Running for 10min, or until CTRL-C: Gateway found, reading VIN
[SDO-REQ 0x01:0x00000081] {1:6007,00; 01} {1:6007,00; 01}
{1:6007,00; 01} {1:6007,00; 01} {1:6007,00; 01} {1:6007,00;
01} {1:6007,00; 013} {1:6007,00; 01} {1:6007,00; 01}

The application requests the NMT state of the 447izer, indicates that the 447izer has
already scanned the gateway (node id 0x01) and then proceeds to read the VIN and
monitor what is happening on the bus.

Note that starting and stopping the application (and therefore connecting and discon-
necting from the 447izer) does not have any effect on what the 447izer is doing on the
bus. The 447izer runs autonomously from the application.

CANopenlA Remote Access and Library User Manual

The manufacturer specific area of the Object Dictionary provides direct access to
configuration data. These can be accessed using the read and write local com-
mands. Syntax used in listing below:

[index,subindex] (data type, access type)
Description

The entries in this section give the host access to the current state of the local CANo-
penlA device. All these entries are read-only.

[5F00h,01h] (UNSIGNEDS, RO)
The node ID of the local CANopenlA device

[5F00h,02h] (UNSIGNEDS, RO)
The current CANopen state of the local CANopenlA device. See section 9.3 for a
list of all defined states.

[5F00h,03h] (UNSIGNEDS, RO)

Bit: 0: INIT — set after a completed initialization

: CERR - set, if a CAN bit or frame error occurred

: ERPA — set, if a CAN "error passive" occurred

: RXOR - set, if a receive queue overrun occurred
: TXOR - set, if a transmit queue overrun occurred
: CANFD - set, if CAN hardware supports CAN FD
: TXBSY - set, if Transmit queue is not empty

: BOFF — set, if a CAN "bus off" error occurred

NoOUAWN P

[5F00h,04h] (UNSIGNED32, RO)

Bit: 0..7: 00h: Custom hardware
01h: CANgineBerry
02h: CANgineLight

Object Dictionary entries in the manufacturer specific area

03h: CANgineBT

04h: PCAN-RS232

05h: PCAN-xxx with PCAN-Basic API
Bit: 8..15: 00h: Custom firmware

01h: CANopenlA Device

02h: CANopenlA Manager

03h: CANopenlA 447izer
Bit: 16..23: Firmware major version
Bit: 24..31: Firmware minor version

[5F00h,05h] (UNSIGNED128/DOMAIN, RO)

The serial number of the microcontroller hosting the CANopenlA software.

The entries in this section can be written to and allow the host to actively control
the local CANopenlA device or manager.

[5F01h,01h] (UNSIGNED8,WO)
Reset the CANopenlA chip, module or library. Writing129 issues a soft reset, 130
a hard reset.

[5F01h,02h] (UNSIGNEDS8,RW)
Activate the CiA 447 sleep objection (set to 1 to object).

[5F01h,03h] (UNSIGNED32,RW)

For If a bit is set in this value, then PDOs coming from the corresponding virtual
device (see vdfg number in CiA-447) are ignored. For example: set bit 7 to ignore
all PDOs coming from GPS devices.

[5F01h,04h] (UNSIGNED32,RW)
Bit: 0: KEEP_OP - set to keep nodes operational
(will send appropriate NMT command automatically)
1: HB receive all - set to activate automated heartbeat monitoring
(default HB times below are used)
2: PDO receive all - set to activate automated device TPDO handling

CANopenlA Remote Access and Library User Manual

(scan devices for their transmit PDOs and receive them all)

3: PDO transmit all - set to activate automated device RPDO handling
(scan devices for their receive PDOs and produce them all)

4: Use scanned entries — set to activate caching of scanned entries.
If requested by host, reply from cache.

5-15: Reserved

16-22: Number of nodes supported for heartbeat monitoring and
SDO client handling

23: Reserved

24-30: Number of nodes supported for automated PDO handling

31: Reserved

[5F01h,05h] (UNSIGNED16,RW)
Use this default event time (in milliseconds) for all PDO transmissions by the
manager.

[5F01h,06h] (UNSIGNED16,RW)
Use this default event time (in milliseconds) for all PDO transmissions by the
manager.

[5F01h,07h] (UNSIGNEDS,RW)

When the manager updates PDO transmission data, this update timeout is started
before triggering the PDO for transmission. This allows the application to update
all objects of a PDO before its transmission is triggered. Note that this time is not
used, when the PDO event time (see below), is hon-zero.

[5F01h,08h] (UNSIGNED16,RW)
Use this default event time (in milliseconds) for all PDO transmissions by the
manager.

[5F01h,09h] (UNSIGNED16,RW)
Use this default inhibit time (in 100" of microseconds) for all PDO transmissions
by the manager.

[5F01h,0Ah] (UNSIGNEDS,WO)

Object Dictionary entries in the manufacturer specific area

Writing a node ID to this entry re-triggers the auto-scan mechanism for this node.
The manger will start a new node scan for this device.

Bit: 0-6: Node ID to scan
7: reserved

Only available with CANopenlA-MGR and 447 versions.

[5F04h,01h] (UNSIGNEDS, RO)
The last known state of node 1, see list below for all defined values.

[5F04h,X] (UNSIGNEDS, RO)
The last known state of this node (allowed range 1 to 127), see list below for all
defined values.

The following values are defined:

NODESTATUS_BOOT 0x00
NODESTATUS_STOPPED 0x04
NODESTATUS_OPERATIONAL 0x05
NODESTATUS_PREOP Ox7F
NODESTATUS_EMCY_NEW 0x80
NODESTATUS_EMCY_OVER 0x81
NODESTATUS_HBACTIVE 0x90
NODESTATUS_HBLOST 0x91

NODESTATUS_SCANSTARTED Ox9F
NODESTATUS_SCANCOMPLETE 0xAO
NODESTATUS_SCANABORTED OxA8

NODESTATUS_RESETAPP 0xBO
NODESTATUS_RESETCOM 0xB1
NODESTATUS_SLEEP O0xFO

NODESTATUS_BOOTLOADER OxF1

Only available with CANopenlA-MGR version. An NMT Master message can be
triggered by writing to [5SFOAh,01h].

CANopenlA Remote Access and Library User Manual

[5FOAN,01h] (UNSIGNED16, WO)
The high byte contains the destination node id (1-127) or zero for “all” nodes.
The low byte contains the NMT command:

01h: Switch to operational state

02h: Switch to stopped state

80h: Switch to pre-operational state
81h: Execute an application reset
82h: Execute a communication reset

In CANopen Manager or CiA 447 mode, the device automatically scans nodes
found on the network for often used entries. This data is available, as soon as a
node's state is reported as NODESTATUS_SCANCOMPLETE.

If caching is enabled in the Manager Control word (Object [5F01h,04h]), then the
CANopenlA device will return the pre-scanned entries without re-requesting these
from the device via CANopen.

Example: If the host requests the object [1018h,1] (vendor id) from node 3 by
sending the ReadRemoteOD command, then the CANopenlA will directly reply
with the value, if it is in the local cache.

	2 Introduction
	2.1 CANopen Object Dictionary
	2.2 CANopen Manager
	SDO Client
	NMT Master and Heartbeat monitoring
	Automated PDO handling

	2.3 Low level access

	3 Hardware options
	3.1 CANgineBerry
	3.2 CANgine Light
	3.3 CANgineII BT
	3.4 PCAN-RS232
	3.5 Library for PCAN Interfaces
	3.6 Custom Module or Chip
	3.7 Wakeup and Sleep

	4 System configuration
	4.1 Bitrate and node ID selection
	4.2 Loading a binary EDS
	Generic CANopenIA configuration load sequence
	Using ESAcademy’s CANopen File Player or CANopen Diag
	Using ESAcademy’s CANopen Magic
	Direct chip flashing / programming

	4.3 Step-by-step custom configuration example
	Create a configuration
	Export the configuration
	Load the configuration

	5 Minimal Manager SDO & PDO Handling
	5.1 Communication options
	Receiving TPDO data from the devices
	Sending data to the devices

	6 The Remote Access Protocol
	6.1 Definitions
	6.2 Error Codes

	7 Commands, Responses and Indications
	7.1 Access to local Object Dictionary
	Indication "D": New process data written to local Object Dictionary
	Command "W": Write to a local Object Dictionary entry
	Response "W": Write (local) response
	Command "R": Read from a local Object Dictionary entry
	Response "R": Read (local) response

	7.2 Access to other nodes
	Command "S": Write to a remote Object Dictionary entry
	Response "S": Write (remote) response
	Command "U": Read from a remote Object Dictionary entry
	Response "U": Read (remote) response

	8 Remote Access Application Example
	9 Object Dictionary entries in the manufacturer specific area
	9.1 CANopenIA Device Status
	9.2 CANopenIA Device Control
	9.3 Status of all nodes
	9.4 NMT Master Message
	9.5 Manager: Automatic Node Scan

