

1 Introduction

CANopenIA
Serial Remote Access to CANopen

for firmware version 1.10 or higher

Rev. 1.12 of 22nd January 2024

Published by

Embedded Systems Academy GmbH

Bahnhofstraße 17

D-30890 Barsinghausen, Germany

www.esacademy.com

CANgine products by

Embedded Systems Solutions GmbH

Industriestraße 15

D-76829 Landau, Germany

www.essolutions.de

COPYRIGHT 2014-2024 BY EMBEDDED SYSTEMS ACADEMY GMBH

http://www.esacademy.com/
http://www.essolutions.de/

2 CANopenIA Remote Access and Library User Manual

1 Contents

2 Introduction .. 5

2.1 CANopen Object Dictionary .. 6

2.2 CANopen Manager ... 6

SDO Client ... 6

NMT Master and Heartbeat monitoring... 7

Automated PDO handling .. 7

2.3 Low level access ... 7

3 Hardware options ... 8

3.1 CANgineBerry .. 8

3.2 CANgine Light .. 8

3.3 CANgineII BT .. 9

3.4 PCAN-RS232... 9

3.5 Library for PCAN Interfaces .. 9

3.6 Custom Module or Chip ... 9

3.7 Wakeup and Sleep ... 10

4 System configuration .. 11

4.1 Bitrate and node ID selection ... 11

4.2 Loading a binary EDS .. 11

Generic CANopenIA configuration load sequence .. 13

Using ESAcademy’s CANopen File Player or CANopen Diag 14

Using ESAcademy’s CANopen Magic .. 15

Direct chip flashing / programming.. 17

4.3 Step-by-step custom configuration example ... 17

Create a configuration ... 17

Export the configuration ... 17

Load the configuration .. 18

3 Introduction

5 Minimal Manager SDO & PDO Handling... 19

5.1 Communication options ... 19

Receiving TPDO data from the devices .. 19

Sending data to the devices ... 20

6 The Remote Access Protocol ... 23

6.1 Definitions ... 23

6.2 Error Codes .. 25

7 Commands, Responses and Indications ... 26

7.1 Access to local Object Dictionary .. 26

Indication "D": New process data written to local Object Dictionary 26

Command "W": Write to a local Object Dictionary entry .. 28

Response "W": Write (local) response ... 29

Command "R": Read from a local Object Dictionary entry 30

Response "R": Read (local) response ... 30

7.2 Access to other nodes .. 31

Command "S": Write to a remote Object Dictionary entry 31

Response "S": Write (remote) response ... 32

Command "U": Read from a remote Object Dictionary entry 33

Response "U": Read (remote) response ... 33

8 Remote Access Application Example.. 35

9 Object Dictionary entries in the manufacturer specific area 38

Name .. 38

9.1 CANopenIA Device Status ... 38

Device status: own node ID ... 38

Device status: own NMT state ... 38

Device status: own HW state ... 38

Device status: own HW/FW mode ... 38

Chip serial number (where available)... 39

4 CANopenIA Remote Access and Library User Manual

9.2 CANopenIA Device Control ... 39

Device control: Reset .. 39

Device control 447: Sleep Objection .. 39

Device control 447: Ignore PDOs from VD.. 39

Manager control (manager only) ... 39

Default heartbeat producer time (manager only)... 40

Default heartbeat consumer time (manager only) ... 40

Default PDO update time (manager only) .. 40

Default PDO transmission event time (manager only) .. 40

Default PDO transmission inhibit time (manager only) ... 40

Manager re-scan device (manager only) .. 40

9.3 Status of all nodes .. 41

Last known state of Node 1 ... 41

Last known state of Node X ... 41

9.4 NMT Master Message .. 41

Transmit NMT (manager only) ... 42

9.5 Manager: Automatic Node Scan ... 42

5 Introduction

2 Introduction

The CANopen coprocessor (447izer if in CiA447 mode) implements a CANopen device, or

a simplified CANopen manager, depending on firmware version. A host system can

communicate with the CANopenIA coprocessor via a regular serial channel. The protocol

used is ESAcademy’s CANopen remote access protocol described in this document. The

CANopenIA coprocessor handles all CANopen communication.

COPROCESSOR WITH HARDWIRED SERIAL INTERFACE

The serial interface can either be directly connected (wired), or it can be a wireless con-

nection, for example using a serial Bluetooth connection.

COPROCESSOR WITH BLUETOOTH SERIAL INTERFACE

CANopenIA is also available as a library version. In this case, each serial command, re-

sponse and indication is mapped to a function or call-back function of an API (Application

Programming Interface).

CANOPENIA LIBRARY RUNNING DIRECTLY ON A HOST SYSTEM

6 CANopenIA Remote Access and Library User Manual

2.1 CANopen Object Dictionary

As required by any CANopen device, the CANopenIA/447izer implements a CANopen

Object Dictionary (OD) that contains all configurations of the chip itself as well as all the

process data communicated. This OD is available to the CANopen network as well as to

the host. Which OD entries are present in the CANopenIA depends on its configuration.

Default configurations are provided for all CANopenIA implementations. Customized

configuration file can be generated using the CANopen Architect EDS Editor and trans-

ferred into the flash memory of the CANopenIA.

OBJECT DICTIONARY IS ACCESS FROM SERIAL AND CANOPEN SIDE

2.2 CANopen Manager

In CANopen, managers provide several functionalities. The ones provided by CANopenIA

are listed in this section.

SDO Client

The CANopenIA-MGR and 447izer versions also support SDO client services. Once such a

CANopenIA device is up and running (CANopen state operational), it may send CANopen

SDO (Service Data Object) read and write requests to the nodes connected to the CANo-

pen network. This gives the host application read and write access to all the Object Dic-

tionaries of all connected nodes.

7 Introduction

Note that in regular CANopen this means that this device uses the regular SDO client

channels used by a CANopen Manager. DO NOT use this mode, when another CANopen

Manager is present and using these channels at the same time.

NMT Master and Heartbeat monitoring

The CANopenIA-MGR firmware also provides the CANopen NMT (Network Management)

Master functions to control the individual nodes connected. The firmware can autostart

known devices to facilitate a quick start up of CANopen systems.

A default heartbeat time and timeout monitoring can be automatically activated. If de-

vices are lost (no more heartbeat received), the master automatically transmits a reset

request to these nodes for automated recovery support.

Automated PDO handling

The minimal CANopen manager supports an automated PDO (Process Data Object) han-

dling. PDO configurations of connected devices are analyzed and activated. The host is

informed about every PDO received from all devices. The information passed on to the

host for data received includes node ID, object info (index, subindex) and the data.

2.3 Low level access

The Software also implements a generic low-level access mode. If this mode is activated,

then any CAN message can be transmitted by the host and CAN messages received are

reported back to the host. An optional CAN message ID filter allows selecting the CAN

messages that should be received.

8 CANopenIA Remote Access and Library User Manual

3 Hardware options

3.1 CANgineBerry

The CANgineBerry is a CANopenIA module intended for the Raspberry Pi. It has a CAN

(DB9) connector and only uses 4 pins for the connection to the Raspberry Pi: +5V, GND

and the 3.3V Rx/Tx signals of the serial channel. Both CANopen RUN and ERR LEDs are

provided.

The module can also be used with any other host system that provides the 4 required

pins. If the preferred communication channel to a host is USB, then a USB-UART chip can

be used as an interface between the host and the CANgineBerry. In that case verify that

the correct voltage levels are used, the CANgineBerry requires +5V for the power supply

but only uses 3.3V on the Tx/Rx lines.

CANGINEBERRY SYSTEM OVERVIEW

3.2 CANgine Light

The CANgine Light by Embedded Systems Solutions GmbH is a small device with a CAN

connector on one side and a RS232 (DB9) connector on the other. Power is supplied via

the CAN connector. The RS232 side can be directly connected to most USB-RS232 con-

verters. Both CANopen RUN and ERR LEDs are provided but no further optional inputs or

outputs.

9 Hardware options

3.3 CANgineII BT

The CANgineII BT by Embedded Systems Solutions GmbH is a small device with a CAN

connector and an internal Bluetooth module. Power is supplied via the CAN connector.

On the connecting Bluetooth device, the CANgineII BT appears like a generic serial de-

vice. Both CANopen RUN and ERR LEDs are provided but no further optional inputs or

outputs.

3.4 PCAN-RS232

The PCAN-RS232 module is a boxed CAN to RS232 module with industrial style open

connectors.

3.5 Library for PCAN Interfaces

The CANopenIA functionality is also available as a Microsoft Windows® DLL for PEAK’s

CAN_API4 supporting the PCAN interfaces from PEAK System. When used as a library, all

commands, responses and indications are provided as functions and call-back functions.

3.6 Custom Module or Chip

The CANopenIA Coprocessor is available as a module or chip for direct integration into

your hardware. The number of pins used is minimal, the input, output and LEDs are op-

tional.

SIGNALS OF THE CANOPENIA CHIP OR MODULE

10 CANopenIA Remote Access and Library User Manual

CANopenIA coprocessor implementations are available for the following microcontrol-

lers:

• NXP LPC11C24
uses internal transceiver, can be directly connected to the CAN_L and CAN_H
lines of the CANopen network

• ST-Microelectronics STM32F091 or STM32F042
requires an external transceiver and connects to the CAN_RX and CAN_TX pins

The optional input signals are:

• MODE:
Set high if used in CiA 447 mode, else low for regular CANopen mode

• AUTORUN:
Set high if device should autostart (directly switch itself into operational mode),
not recommended for CiA 447

• WAKEUP:
A rising flank on this pin wake ups the chip / module if it was in sleep, the device
then produces the wakeup messages

• USER:
Input pin for customizations

The optional output pins are

• PWR:
Produce a rising flank on wakeup

• SLPRQ:
Set high, if sleep request was received from power manager

3.7 Wakeup and Sleep

In CiA 447 mode the chip wakes up upon detecting any activity on the serial channel, the

CANopen channel or the wakeup pin. It then participates in the CANopen wakeup com-

munication.

Upon reception of the sleep request from the CANopen power manager the device for-

wards this request to the serial interface and then sets itself into sleep mode.

11 System configuration

4 System configuration

The CANopenIA implementation is configured by the local Object Dictionary. This is

stored in Flash memory and can be re-loaded. The format used is ESAcademy’s binary

EDS file format, which is exported by the CANopen Architect EDS utility for Editing CAN-

open Electronic Data Sheets (EDS). Depending on CANopenIA firmware, a variety of de-

fault configuration files are provided.

GENERATING A CONFIGURATION WITH CANOPEN ARCHITECT

In addition, some firmware versions support customized configurations. If an EDS or

CODB (CiA format for Object Dictionary definition) already exists specifying the configu-

ration, then this can be imported into the CANopen Architect software. After edit-

ing/modifying the configuration, a current EDS and binary EDS are exported. The binary

EDS is directly loaded into the CANopenIA device, module or chip.

4.1 Bitrate and node ID selection

The bitrate and node ID settings are also made through the binary EDS. The host system

cannot change these settings. If the configured node ID is zero, then LSS (Layer Setting

Services) are used to get a node ID assigned by the LSS Master.

4.2 Loading a binary EDS

When using a CANopenIA library, the binary EDS file with the configuration to be used is

passed to the library upon its initialization. All other implementations store the configu-

ration in EEPROM. The binary EDS configuration is located in the Object Dictionary entry

12 CANopenIA Remote Access and Library User Manual

[1F50h,2h]. This entry is only accessible after a version dependent activation sequence

has been used to set the CANopenIA into bootloader mode.

The default method for loading the file is via CANopen SDO communication. Any CANo-

pen Manager or configuration tool like CANopen Magic can be used to send the boot-

loader activation sequence and the binary EDS configuration.

LOADING A CONFIGURATION INTO CANOPENIA – VIA CANOPEN

The CANgineBerry supports loading the configuration file through the serial interface.

This gives the host full configuration control, as it can activate any desired configuration

by itself.

The CANgineBerry must follow the bootloader activation sequence (to prohibit acci-

dental misconfigurations). Once the bootloader is activated, the binary EDS file can be

written to the [1F50h,2h] entry. Internally, the CANgineberry then transfers the new

configuration to the EERPOM and activates it upon the next system re-start (reset or

power cycle).

13 System configuration

LOADING A CANGINEBERRY CONFIGURATION – VIA HOST

Generic CANopenIA configuration load sequence

The default sequence to activate the configuration bootloader is as follows:

1.) For CiA 447 only (typically done by IVN gateway):
wake-up the device and assign it a node ID using LSS Master services

2.) Ensure the CANopenIA device is in pre-operational mode using the NMT Master
message (not required with CiA 447 version)

3.) Read the device’s serial number with an SDO client read,
Object Dictionary entry [1018h,4h]

4.) Write the device’s serial number to the Program Data with an SDO client write,
Object Dictionary entry [1F50h,1h]

5.) Write “0” to the device’s Program Control entry with an SDO client write
Object Dictionary entry [1F51h,1h]

The CANopenIA device now resets and boots up in bootloader mode with a default node

ID of 70h.

6.) Write the binary bootloader EDS file to the Program Data Object Dictionary en-
try [1F50h,2h] (of node 70h) with an SDO client segmented write access

After a successful transfer of the configuration, the CANopenIA device re-starts itself.

The trace recoding shows the sequence starting at step 4) – writing the serial number. In

this example the CANopenIA node has the node ID 2 and the serial number 04040D41h.

14 CANopenIA Remote Access and Library User Manual

After the initial two SDO writes, the device re-starts with node ID 70h. Then the configu-

ration is written. Last step is to re-activate the regular program by writing 1 to the Pro-

gram Control entry. The Error reset emergency confirms that the CANopenIA application

is now started again.

TRACE RECORDING OF THE CONFIGURATION LOAD SEQUENCE

Using ESAcademy’s CANopen File Player or CANopen Diag

The configuration load sequence can be executed by any software or device supporting

ESAcademy’s Extended Concise Device Configuration Format (xCDCF). This is an exten-

sion of the standard CANopen CDCF that allows flow control and integration of files. The

base format is a .CSV (comma separated values) file with the sequence commands.

XCDCF CONTROL FILE FOR THE CONFIGURATION LOAD SEQUENCE

ID Message Type Node Details Data (Hex)

0x602 SDO Download Request 0x02 (2) [0x1F50,0x01] Write Program Data 1, expedited 41 0D 04 04

0x582 SDO Download Response 0x02 (2)

0x602 SDO Download Request 0x02 (2) [0x1F51,0x01] Write Program Control 1, expedited 00

0x582 SDO Download Response 0x02 (2)

0x770 NMT Status 0x70 (112) Bootup

0x670 SDO Download Request 0x70 (112) [0x1F50,0x02] Write Program Data 2, fragmented, 2217 bytes

0x5F0 SDO Download Response 0x70 (112)

0x670 SDO Download Segment Request 0x70 (112) toggle = 0 02 00 00 04 00 00 FA

0x5F0 SDO Download Response 0x70 (112) toggle = 0

0x670 SDO Download Segment Request 0x70 (112) toggle = 1 20 00 00 00 02 00 00

0x5F0 SDO Download Response 0x70 (112) toggle = 1

0x670 SDO Download Segment Request 0x70 (112) toggle = 0 00 50 4F 43 4D 03 00

0x5F0 SDO Download Response 0x70 (112) toggle = 0

...

0x670 SDO Download Segment Request 0x70 (112) toggle = 1 02 0F FE 00 B4 5F DE

0x5F0 SDO Download Response 0x70 (112) toggle = 1

0x670 SDO Download Segment Request 0x70 (112) toggle = 0, last segment 00 00 00 01 FF

0x5F0 SDO Download Response 0x70 (112) toggle = 0

0x670 SDO Download Request 0x70 (112) [0x1F51,0x01] Write Program Control 1, expedited 01

0x5F0 SDO Download Response 0x70 (112)

0x0F0 Emergency 0x70 (112) [0x0000 (0)] Error reset or no error 00 00 00 00 00

Comment Command Index Subindex Type Data

Name FILE_INFO STRING Activate bootloader

Version FILE_VERSION STRING V1.01 of 13-JAN-17

SETTING_NODE_ID UNSIGNED8 0x02

CONTROL_SDO_READ UNSIGNED8 0x80

Read serial number 0x1018 0x04 UNSIGNED32 1

CONTROL_SDO_BUFFER UNSIGNED8 0

Write back serial number 0x1F50 0x01 UNSIGNED32 0

Stop program 1 0x1F51 0x01 UNSIGNED8 0

Change Node ID SETTING_NODE_ID UNSIGNED8 0x70

Wait for bootup CONTROL_WAIT_FOR UNSIGNED8 0x00

Write configuration 0x1F50 0x02 DOMAIN CiA447_config_bl.hbin

Flash delay CONTROL_PAUSE UNSIGNED16 2000

Back to application 0x1F51 0x01 UNSIGNED8 1

15 System configuration

In the example above, the CANopenIA node ID is 2. It’s serial number is read to an inter-

nal buffer and written back to the program data field.

Using ESAcademy’s CANopen Magic

Any CANopen configuration tool can typically be used to execute the steps of the se-

quence manually step by step.

Note that 447 devices set themselves to sleep after a timeout period without detection

of a gateway. So when executing the sequence manually without a gateway, the CANo-

penIA device might shut itself down again, if the sequence takes too long to execute.

The screen shots below show the individual steps executed with the SDO access func-

tions provided by CANopen Magic.

READING THE SERIAL NUMBER

WRITING IT BACK TO THE PROGRAM DATA ENTRY

16 CANopenIA Remote Access and Library User Manual

STOPPING THE CURRENT RUNNING PROGRAM

LOADING THE CONFIGURATION

RE-STARTING THE PROGRAM

17 System configuration

Direct chip flashing / programming

If you use a custom CANopenIA chip solution integrated into your hardware, the configu-

ration can be flashed into the chip at the same time the CANopenIA binary code is

flashed using the internal UART bootloader or the JTAG/SWD pins.

See the hardware specific manuals for the various CANopenIA variations for more de-

tails.

4.3 Step-by-step custom configuration example

Configurations are created and maintained with ESAcademy’s CANopen Architect utility

to edit Electronic Data Sheets (EDS). Example configurations are provided as part of the

delivery.

Create a configuration

To start your own configuration, duplicate the “CiAxxx_Minimal” device and rename it to

your own project. Review and edit the settings in the “File” and “Device” sections, as

well as the object dictionary entries 1008h to 100Ah and 1018h.

Now add the entries that you still require for your device by copying them from the

“CiAxxx_AllEntries” section or by adding them manually.

Export the configuration

To create the binary EDS configuration file required by CANopenIA devices, select “Ex-

port Binary EDS for Bootloader” from the local menu.

This creates a “.bin” file containing the binary EDS.

18 CANopenIA Remote Access and Library User Manual

EXPORTING A CONFIGURATION FROM CANOPEN ARCHITECT

Load the configuration

The “.bin” file created can directly be transferred to the CANopenIA device as described

in the previous section using utilities like the CANopen File Player or CANopen Magic.

19 Minimal Manager SDO & PDO Handling

5 Minimal Manager SDO & PDO Handling

The CANopenIA Minimal Manager version simplifies how an application uses CANopen

communication. Here all data is only referred to by a node ID and the Object (Index and

Subindex) to address ab object in a node’s object dictionary.

Using the write and read to a remote object dictionary functions, the host system can

read and write all objects in a network.

In addition, the host system receives event notifications, if data came in from a remote

object. Again, referred to by the node ID the data comes from and the object dictionary

entry (Index and Subindex).

If your application is generic and does not require optimized communication (e.g. to

lower the bus load for communication or achieve shorter reaction times), the this is all

you need to know.

5.1 Communication options

The default CANopen communication mode used by the CANopenIA-MGR is the SDO

communication (Service Data Objects). Here the manager sends one read/write request

for a single object of a node and receives one response.

Internally, the manager scans detected devices for their PDO (Process Data Object) con-

figuration. The scanned information is used by the minimal manger to configure itself for

receiving all Transmit PDOs transmitted by the devices and for transmission of all Receive

PDOs to the devices.

Receiving TPDO data from the devices

The application requires no knowledge about the Transmit PDO configuration of the

devices. Once self-configured, the minimal manger receives all PDOs generated by the

devices and converts them into the corresponding “New Data” indication events towards

the host or application. The application automatically receives all PDO data.

For each object received, the host/application is informed about:

• The node ID which sent the data

• Which Object of that node was received (Index/Subindex)

• The data itself

20 CANopenIA Remote Access and Library User Manual

Sending data to the devices

The application addresses the data in the same fashion as for received data. It uses the

WriteRemoteOD functionality and informs the CANopenIA Manager about:

• The node ID to which the data needs to be send

• Which Object of that node is it going to (Index/Subindex)

• The data itself

The manager automatically determines if this data can be send by PDO or if a SDO needs

to be triggered. As PDOs can have multiple objects mapped (multiple object contained in

one CAN message) all mapped items must be written at least once, before the PDO can

be transmitted by the manager. This is required to prohibit transmission of uninitialized

data/commands to a CANopen device.

We recommend that once the application receives the call-back that a mode has been

scanned, it writes once to all objects of that device that can be written to, to ensure all

data has been initialized.

PROCESSING REMOTE DATA WRITE REQUESTS

The flow chart above illustrates how the manager processes data write requests to

nodes on the network. If the data written is not part of any PDO, it gets written to the

21 Minimal Manager SDO & PDO Handling

node using a SDO client write access. Once the SDO response comes back from the node,

this response is passed on to the host.

Otherwise the data is copied to the appropriate buffer and the PDO update timer is han-

dled. If it is the first use, then the timer value is multiplied with 5 to give the host more

time to write all the data to init the PDO. The PDO gets queued/triggered ready for

transmission once the PDO update timer expires.

Internally, the CANopenIA system continuously checks if a PDO requires transmission

(see next flow chart “PDO trigger task”.

PDOs are only processed for transmission, if data is available and the update time ex-

pired.

PDO TRIGGER TASK

If both the default event and inhibit times (objects [5F01h,05h] and [5F01h,06h], see

section 9.2) are zero, then a PDO is triggered for transmission whenever the

update time expires (time since last write by the host) or the last mapped entry

has been written.

Once set (non-zero), the event and inhibit times work as defined in CANopen:

If the inhibit time is set (non-zero) and the event time is zero, then any repetitive

transmission is only transmitted, if the time since last transmission is at least as

long as the inhibit time.

22 CANopenIA Remote Access and Library User Manual

If the event time is set (non-zero) and the inhibit time is zero, then the PDO is

transmitted cyclically, no matter if the data has been updated by the application or

not.

If both times are set, then they are combined. If triggered by host (expiration of

update time), then the PDO gets transmitted, observing the inhibit time. Without

host triggering, the PDO is transmitted cyclically based on the event time.

23 The Remote Access Protocol

6 The Remote Access Protocol

This chapter specifies the commands for controlling the CANopenIA Coprocessor via a

serial interface. The protocol is suitable for tunneling through other networks such as a

Bluetooth or TCP connection as well as for communication between a CANopen task and

a host task within one system.

The communication between the host and the CANopenIA is based on messages with

binary content and a check sum.

6.1 Definitions

Byte or UNSIGNED8:

8-bit, unsigned value

UNSIGNED16:

16-bit, unsigned value

UNSIGNED32:

32-bit, unsigned value

Host:

The processor or application controlling the CANopen CANopenIA via the interface speci-

fied in this document

Command:

Message from host to CANopenIA with a request to execute a command.

Response:

Message from CANopenIA to host in response to a command. Every command triggers a

response. Some responses may take longer as CANopen communication might be in-

volved. As a result one or multiple Indications might occur before receiving a response.

Indication:

Message from CANopenIA to host indicating the host that an event occurred.

Max data size:

In this version, the maximum user data size is 28 bytes. Including overhead, this results in

a maximum serial packet size of 35 bytes.

Message Definition

Any message exchanged between Host and the CANopen node use the following struc-

ture (all Bytes):

24 CANopenIA Remote Access and Library User Manual

<start character><length><command/response/indication><checksum>

Multi-Byte values are transmitted in little-endian format.

<start character> (Byte) default: 11h

1. Bits 0 to 3 indicate the network number, the value of zero is reserved,

the default is one.

2. Bit 4 indicates if a checksum is used or not. If set, checksum is used, the

default is one, using a checksum.

3. Bit 5 indicates if the length value has 8 or 16 bit. If set, 16 bits are used,

the default is zero, using 8 bits for the length value.

4. Bits 6 to 7 are reserved.

<length> (Byte or UNSIGNED16, see Bit 5 of start character)

The total length of the command/response/indication in bytes.

<command/response/indication>

The data transferred in this packet can be a command, a response or an indication. For

details see specifications below.

<checksum> (UNSIGNED16 or not used, see Bit 4 of start character)

A 16-bit CRC calculated with the Polynomial x16 + x15 + x2 + 1. The checksum calculation

does not involve the start character.

25 The Remote Access Protocol

6.2 Error Codes

Most of the responses contain an error code field. A value of zero means "no error". The

bits in the error code field have the following meanings:

Bit Meaning

0 Object Dictionary entry not found

1 Invalid command length

2 Invalid command

3 Busy (e.g. SDO client is currently in use)

4 No resources (e.g. internal problem obtaining an SDO

client) 5 Transmit buffer is full

6 Transfer was aborted

7 Receive buffer size was too small

8 SDO toggle error

9 SDO timeout

10 Unknown/miscellaneous error

11 Not supported

12 Node not available

13 Non-volatile memory write failure

14 Not all PDO mapped objects written

26 CANopenIA Remote Access and Library User Manual

7 Commands, Responses and Indications

7.1 Access to local Object Dictionary

The commands, responses and indications of this section are used to access the local

object dictionary of the CANopenIA Coprocessor.

The syntax shown is split into the serial version “Serial” (on lowest level, treated as an

array of bytes) and the “C” style function interface, if used in the library version.

Indication "D": New process data written to local Object Dictionary

New process data arrived from the CANopen network and was written to a local

Object Dictionary entry. The node ID of the sender (if known), the Object Diction-

ary entry in question and the new data is part of this indication. This applies to

both data received by SDO and PDO access. Data size is indicated via length

field of lower communication layer or length parameter when use is a library.

In minimal manager and CiA 447 mode ALL CiA defined/known PDOs are re-

ceived and cause an indication. Advanced versions allow setting of optional filters

to ignore unwanted PDOs.

27 Commands, Responses and Indications

Serial: D<nodeid><index><subindex><data>

C: void COIACB_NewData(

 UNSIGNED8 nodeid,

 UNSIGNED16 index,

 UNSIGNED8 subindex,

 UNSIGNED16 length,

 UNSIGNED8 *data

);

<nodeid> (UNSIGNED8):

The node ID of the device sending this data.

<index> (UNSIGNED16):

The index of the Object Dictionary entry.

<subindex> (UNSIGNED8):

The subindex of the Object Dictionary entry.

<length> (UNSIGNED16):

Library interface only, length of the data.

<data> (UNSIGNED8):

The data of the Object Dictionary entry.

28 CANopenIA Remote Access and Library User Manual

Command "W": Write to a local Object Dictionary entry

Writes data to one local Object Dictionary entry. Data size is indicated via length

field of lower communication layer (see message definition).

Serial: W<index><subindex><data>

C: UNSIGNED32 COIA_WriteLocalOD(

 UNSIGNED16 index,

 UNSIGNED8 subindex,

 UNSIGNED32 length,

 UNSIGNED8 *data

);

<index> (UNSIGNED16):

The index of the Object Dictionary entry.

<subindex> (UNSIGNED8):

The subindex of the Object Dictionary entry.

<length> (UNSIGNED16):

Library interface only, length of the data.

29 Commands, Responses and Indications

<data> (one or multiple UNSIGNED8):

The data to be written to the Object Dictionary entry.

library: return value of function (UNSIGNED32):

Error code or zero for no error.

Response "W": Write (local) response

The following message is a response from the CANopen device to every “W”

message processed.

Serial: W<index><subindex><err>

C: Not used (WriteLocalOD is blocking and returns values)

<index> (UNSIGNED16):

The index of the Object Dictionary entry.

<subindex> (UNSIGNED8):

The subindex of the Object Dictionary entry.

<err> (UNSIGNED16):

Error code or zero for no error.

30 CANopenIA Remote Access and Library User Manual

Command "R": Read from a local Object Dictionary entry

Request to read data from one Object Dictionary entry. Data size is indicated via

length field of lower communication layer.

Serial: R<index><subindex>

C: UNSIGNED32 COIA_ReadLocalOD(

 UNSIGNED16 index,

 UNSIGNED8 subindex

 UNSIGNED16 *length,

 UNSIGNED8 *data

);

<index> (UNSIGNED16):

The index of the Object Dictionary entry.

<subindex> (UNSIGNED8):

The subindex of the Object Dictionary entry.

For remaining parameters see description below.

Response "R": Read (local) response

The following message is a response from the CANopen device to every “R”

message processed. Data size is indicated via length field of lower communica-

tion layer (see message definition).

Serial: R<index><subindex><err><data>

C: Not used (ReadLocalOD is blocking and returns values)

<index> (UNSIGNED16):

The index of the Object Dictionary entry.

<subindex> (UNSIGNED8):

The subindex of the Object Dictionary entry.

<err> (UNSIGNED16):

library: return value of function (UNSIGNED32):

Error code or zero for no error.

<length> (UNSIGNED16):

Library interface only, length of the data.

<data> (one or multiple UNSIGNED8):

The data read from the Object Dictionary entry.

31 Commands, Responses and Indications

7.2 Access to other nodes

The commands, responses and indications of this section are used to access

object dictionary entries of any node on the network. In CANopen terminology

these use SDO clients to communicate with the nodes addressed.

These commands require SDO clients which are only available when the Manag-

er or CiA 447 functionality is enabled.

Command "S": Write to a remote Object Dictionary entry

Writes data to one Object Dictionary entry of a remote node (using SDO client

access). Data size is indicated via length field of lower communication layer.

Serial: S<nodeid><index><subindex><data>

C (blocking): UNSIGNED32 COIA_WriteRemoteOD(

C (non-block): UNSIGNED32 COIA_WriteRemoteODExtended(

 UNSIGNED8 nodeid,

 UNSIGNED16 index,

 UNSIGNED8 subindex,

 UNSIGNED16 length,

 UNSIGNED8 *data

);

<nodeid> (UNSIGNED8):

The ID of the node to write to.

32 CANopenIA Remote Access and Library User Manual

All other parameters are the same as with the WriteLocalOD command.

Note: only one remote SDO operation can take place at a time. This applies to

read and writes. An attempt to start a new SDO operation while one is still com-

pleting will generate an error.

Response "S": Write (remote) response

The following message is a response from the CANopen device to every “S”

message processed.

Serial: S<nodeid><index><subindex><err>

C (blocking): Not used (WriteRemoteOD is blocking and returns values)

C (non-block): void COIACB_SDORequestComplete (

 UNSIGNED8 nodeid,

 UNSIGNED32 abortcode

);

<nodeid> (UNSIGNED8):

The node ID of the remote node addressed.

<err> (UNSIGNED16):

Error code or zero for no error.

<abortcode> (UNSIGNED32, library only):

Zero if SDO transfer completed without errors, else SDO Abortcode.

All other parameters are the same as with the local write response.

33 Commands, Responses and Indications

Command "U": Read from a remote Object Dictionary entry

Request to read data from a remote Object Dictionary entry (using SDO client

access, upload).

Serial: U<nodeid><index><subindex>

C (blocking): UNSIGNED32 COIA_ReadRemoteOD(

C (non-block): UNSIGNED32 COIA_ReadRemoteODExtended(

 UNSIGNED8 nodeid,

 UNSIGNED16 index,

 UNSIGNED8 subindex,

 UNSIGNED16 *length,

 UNSIGNED8 *data

);

<nodeid> (UNSIGNED8):

The ID of the node to read from.

All other parameters are the same as with the WriteLocalOD command.

Note: On some limited implementations only one remote SDO operation can take

place at a time. This applies to remote read and writes. An attempt to start a new

remote operation while one is still completing will generate an error on these de-

vices.

Response "U": Read (remote) response

The following message is a response from the CANopen device to every “U”

message processed. Data size is indicated via length field of lower communica-

tion layer.

Serial: U<nodeid><index><subindex><err><data>

C (blocking): Not used (ReadRemoteOD is blocking and returns values)

C (non-block): void COIACB_SDORequestComplete (

 UNSIGNED8 nodeid,

 UNSIGNED32 abortcode

);

<nodeid> (UNSIGNED8):

The node ID of the remote node addressed.

<err> (UNSIGNED16):

Error code or zero for no error.

34 CANopenIA Remote Access and Library User Manual

<abortcode> (UNSIGNED32, library only):

Zero if SDO transfer completed without errors, else SDO Abortcode.

Library version:

when the last command was the COIA_ReadRemoteODExtended() command,

the data length and the data returned will be copied to the pointers passed upon

calling that function.

All other parameters are the same as with the local write response.

35 Remote Access Application Example

8 Remote Access Application Example

Open a command window and switch to the RemoteAccessApp folder.

CD C:\Program Files (x86)\447izer\RemoteAccessApp

Start the application by entering the executable name followed by the number of the

COM port the PC is using for the serial communication. For example:

RA_App.exe 8

Starting the application will wake up the 447izer if it is currently asleep, which will also

wake up the gateway if it is also asleep.

Micro CANopen Remote Access to Roof Bar Application by
www.esacademy.com
V2.21 of 29-APR-2014

Connecting to COM8 port...
Connected to COM8 port

Data in {NodeID:Index,Subindex;Data}-brackets is received in call

back functions.

{Hardware status changed to 0x00000009 - INIT RX-OVERRUN }
{Own node ID changed to 0}
{Own status changed to 240}
{Own node ID changed to 2}
{Node 2 status changed to 0x00 - BOOT}
{Node 2 status changed to 0x7F - PREOP}
{Hardware status changed to 0x00000009 - INIT RX-OVERRUN }
{Own node ID changed to 2}
{Own status changed to 127} {1:6007,00; 00} {1:6050,00; 00 00}
{1:6053,00; FF FF} {1:6055,00; FF FF FF} {1:6050,00; 00 00}
{1:6053,00; FF FF} {1:6055,00; FF FFFF} {1:6050,00; 00 00}
{1:6053,00; FF FF} {1:6055,00; FF FF FF}

36 CANopenIA Remote Access and Library User Manual

{Node 2 status changed to 0x05 - OPERATIONAL}
{Own status changed to 5} {1:6050,00; 00 00} {1:6053,00; FF FF}
{1:6055,00; FF FF FF}

{Node 1 status changed to 0x05 - OPERATIONAL}
{Node 1 status changed to 0x90 - HB ACTIVE} {1:6050,00; 00 00}
{1:6053,00; FF FF} {1:6055,00; FF FF FF} {1:6050,00; 00 00}
{1:6053,00; FF FF} {1:6055,00; FF FFFF} {1:6032,00; FF FF}
{1:60B0,01; 00 00 00 00} {1:60B0,02; 00 00 00 00} {1:6080
,00; E0} {1:6082,00; FF} {1:6085,00; E0} {1:6087,00; FF}
{1:608A,00; E0}

As can be seen from the output the gateway assigned a node ID of 0x02 to the 447izer.

The 447izer then booted and wait into pre-operational mode. Finally the 447izer com-

pleted initialization and when into operational mode.

{Node 2 status changed to 0x05 - OPERATIONAL}

Here is what the output looks like if the 447izer was already awake and operating when

the remote access application is started:

Micro CANopen Remote Access to Roof Bar Application by
www.esacademy.com
V2.21 of 29-APR-2014

Connecting to COM8 port...
Connected to COM8 port

Data in {NodeID:Index,Subindex;Data}-brackets is received in call

back functions.

Requesting NMT state of node...

NMT State = 0x 5
{1:6050,00; 00 00} {1:6053,00; FF FF} {1:6055,00; FF FF FF}
Node 0x01 already SCANNED

37 Remote Access Application Example

Send command to ignore selected PDOs

Running for 10min, or until CTRL-C: Gateway found, reading VIN
[SDO-REQ 0x01:0x00000081] {1:6007,00; 01} {1:6007,00; 01}
{1:6007,00; 01} {1:6007,00; 01} {1:6007,00; 01} {1:6007,00;
01} {1:6007,00; 01} {1:6007,00; 01} {1:6007,00; 01}

The application requests the NMT state of the 447izer, indicates that the 447izer has

already scanned the gateway (node id 0x01) and then proceeds to read the VIN and

monitor what is happening on the bus.

Note that starting and stopping the application (and therefore connecting and discon-

necting from the 447izer) does not have any effect on what the 447izer is doing on the

bus. The 447izer runs autonomously from the application.

38 CANopenIA Remote Access and Library User Manual

9 Object Dictionary entries in the manu-

facturer specific area

The manufacturer specific area of the Object Dictionary provides direct access to

configuration data. These can be accessed using the read and write local com-

mands. Syntax used in listing below:

Name
[index,subindex] (data type, access type)

Description

9.1 CANopenIA Device Status

The entries in this section give the host access to the current state of the local CANo-

penIA device. All these entries are read-only.

Device status: own node ID
[5F00h,01h] (UNSIGNED8, RO)

The node ID of the local CANopenIA device

Device status: own NMT state
[5F00h,02h] (UNSIGNED8, RO)

The current CANopen state of the local CANopenIA device. See section 9.3 for a

list of all defined states.

Device status: own HW state
[5F00h,03h] (UNSIGNED8, RO)

Bit: 0: INIT – set after a completed initialization

 1: CERR – set, if a CAN bit or frame error occurred

 2: ERPA – set, if a CAN "error passive" occurred

 3: RXOR – set, if a receive queue overrun occurred

 4: TXOR – set, if a transmit queue overrun occurred

 5: CANFD – set, if CAN hardware supports CAN FD

 6: TXBSY – set, if Transmit queue is not empty

 7: BOFF – set, if a CAN "bus off" error occurred

Device status: own HW/FW mode
[5F00h,04h] (UNSIGNED32, RO)

Bit: 0..7: 00h: Custom hardware

 01h: CANgineBerry

 02h: CANgineLight

39 Object Dictionary entries in the manufacturer specific area

 03h: CANgineBT

 04h: PCAN-RS232

 05h: PCAN-xxx with PCAN-Basic API

Bit: 8..15: 00h: Custom firmware

 01h: CANopenIA Device

 02h: CANopenIA Manager

 03h: CANopenIA 447izer

Bit: 16..23: Firmware major version

Bit: 24..31: Firmware minor version

Chip serial number (where available)
[5F00h,05h] (UNSIGNED128/DOMAIN, RO)

The serial number of the microcontroller hosting the CANopenIA software.

9.2 CANopenIA Device Control

The entries in this section can be written to and allow the host to actively control

the local CANopenIA device or manager.

Device control: Reset
[5F01h,01h] (UNSIGNED8,WO)

Reset the CANopenIA chip, module or library. Writing129 issues a soft reset, 130

a hard reset.

Device control 447: Sleep Objection
[5F01h,02h] (UNSIGNED8,RW)

Activate the CiA 447 sleep objection (set to 1 to object).

Device control 447: Ignore PDOs from VD
[5F01h,03h] (UNSIGNED32,RW)

For If a bit is set in this value, then PDOs coming from the corresponding virtual

device (see vdfg number in CiA-447) are ignored. For example: set bit 7 to ignore

all PDOs coming from GPS devices.

Manager control (manager only)
[5F01h,04h] (UNSIGNED32,RW)

Bit: 0: KEEP_OP - set to keep nodes operational

 (will send appropriate NMT command automatically)

 1: HB receive all - set to activate automated heartbeat monitoring

 (default HB times below are used)

 2: PDO receive all - set to activate automated device TPDO handling

40 CANopenIA Remote Access and Library User Manual

 (scan devices for their transmit PDOs and receive them all)

 3: PDO transmit all - set to activate automated device RPDO handling

 (scan devices for their receive PDOs and produce them all)

 4: Use scanned entries – set to activate caching of scanned entries.

 If requested by host, reply from cache.

 5-15: Reserved

 16-22: Number of nodes supported for heartbeat monitoring and

 SDO client handling

 23: Reserved

 24-30: Number of nodes supported for automated PDO handling

 31: Reserved

Default heartbeat producer time (manager only)
[5F01h,05h] (UNSIGNED16,RW)

Use this default event time (in milliseconds) for all PDO transmissions by the

manager.

Default heartbeat consumer time (manager only)
[5F01h,06h] (UNSIGNED16,RW)

Use this default event time (in milliseconds) for all PDO transmissions by the

manager.

Default PDO update time (manager only)
[5F01h,07h] (UNSIGNED8,RW)

When the manager updates PDO transmission data, this update timeout is started

before triggering the PDO for transmission. This allows the application to update

all objects of a PDO before its transmission is triggered. Note that this time is not

used, when the PDO event time (see below), is non-zero.

Default PDO transmission event time (manager only)
[5F01h,08h] (UNSIGNED16,RW)

Use this default event time (in milliseconds) for all PDO transmissions by the

manager.

Default PDO transmission inhibit time (manager only)
[5F01h,09h] (UNSIGNED16,RW)

Use this default inhibit time (in 100th of microseconds) for all PDO transmissions

by the manager.

Manager re-scan device (manager only)
[5F01h,0Ah] (UNSIGNED8,WO)

41 Object Dictionary entries in the manufacturer specific area

Writing a node ID to this entry re-triggers the auto-scan mechanism for this node.

The manger will start a new node scan for this device.

Bit: 0-6: Node ID to scan

 7: reserved

9.3 Status of all nodes

Only available with CANopenIA-MGR and 447 versions.

Last known state of Node 1
[5F04h,01h] (UNSIGNED8, RO)

The last known state of node 1, see list below for all defined values.

Last known state of Node X
[5F04h,X] (UNSIGNED8, RO)

The last known state of this node (allowed range 1 to 127), see list below for all

defined values.

The following values are defined:

 NODESTATUS_BOOT 0x00

 NODESTATUS_STOPPED 0x04

 NODESTATUS_OPERATIONAL 0x05

 NODESTATUS_PREOP 0x7F

 NODESTATUS_EMCY_NEW 0x80

 NODESTATUS_EMCY_OVER 0x81

 NODESTATUS_HBACTIVE 0x90

 NODESTATUS_HBLOST 0x91

 NODESTATUS_SCANSTARTED 0x9F

 NODESTATUS_SCANCOMPLETE 0xA0

 NODESTATUS_SCANABORTED 0xA8

 NODESTATUS_RESETAPP 0xB0

 NODESTATUS_RESETCOM 0xB1

 NODESTATUS_SLEEP 0xF0

 NODESTATUS_BOOTLOADER 0xF1

9.4 NMT Master Message

Only available with CANopenIA-MGR version. An NMT Master message can be

triggered by writing to [5F0Ah,01h].

42 CANopenIA Remote Access and Library User Manual

Transmit NMT (manager only)
[5F0Ah,01h] (UNSIGNED16, WO)

The high byte contains the destination node id (1-127) or zero for “all” nodes.

The low byte contains the NMT command:

01h: Switch to operational state

02h: Switch to stopped state

80h: Switch to pre-operational state

81h: Execute an application reset

82h: Execute a communication reset

9.5 Manager: Automatic Node Scan

In CANopen Manager or CiA 447 mode, the device automatically scans nodes

found on the network for often used entries. This data is available, as soon as a

node's state is reported as NODESTATUS_SCANCOMPLETE.

If caching is enabled in the Manager Control word (Object [5F01h,04h]), then the

CANopenIA device will return the pre-scanned entries without re-requesting these

from the device via CANopen.

Example: If the host requests the object [1018h,1] (vendor id) from node 3 by

sending the ReadRemoteOD command, then the CANopenIA will directly reply

with the value, if it is in the local cache.

	2 Introduction
	2.1 CANopen Object Dictionary
	2.2 CANopen Manager
	SDO Client
	NMT Master and Heartbeat monitoring
	Automated PDO handling

	2.3 Low level access

	3 Hardware options
	3.1 CANgineBerry
	3.2 CANgine Light
	3.3 CANgineII BT
	3.4 PCAN-RS232
	3.5 Library for PCAN Interfaces
	3.6 Custom Module or Chip
	3.7 Wakeup and Sleep

	4 System configuration
	4.1 Bitrate and node ID selection
	4.2 Loading a binary EDS
	Generic CANopenIA configuration load sequence
	Using ESAcademy’s CANopen File Player or CANopen Diag
	Using ESAcademy’s CANopen Magic
	Direct chip flashing / programming

	4.3 Step-by-step custom configuration example
	Create a configuration
	Export the configuration
	Load the configuration

	5 Minimal Manager SDO & PDO Handling
	5.1 Communication options
	Receiving TPDO data from the devices
	Sending data to the devices

	6 The Remote Access Protocol
	6.1 Definitions
	6.2 Error Codes

	7 Commands, Responses and Indications
	7.1 Access to local Object Dictionary
	Indication "D": New process data written to local Object Dictionary
	Command "W": Write to a local Object Dictionary entry
	Response "W": Write (local) response
	Command "R": Read from a local Object Dictionary entry
	Response "R": Read (local) response

	7.2 Access to other nodes
	Command "S": Write to a remote Object Dictionary entry
	Response "S": Write (remote) response
	Command "U": Read from a remote Object Dictionary entry
	Response "U": Read (remote) response

	8 Remote Access Application Example
	9 Object Dictionary entries in the manufacturer specific area
	9.1 CANopenIA Device Status
	9.2 CANopenIA Device Control
	9.3 Status of all nodes
	9.4 NMT Master Message
	9.5 Manager: Automatic Node Scan

